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FIELD THEORY IN SO(2, 3)? MODEL OF

NONCOMMUTATIVE GRAVITY

Doctoral Dissertation

Belgrade, 2019



UNIVERZITET U BEOGRADU
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Abstract

Arguably the greatest challenge of contemporary theoretical physics is to

understand the profound interplay between Quantum Mechanics (QM) and

the General Theory of Relativity (GR). To solve the problem of “Quantum

Gravity” (QG) one has to transcend some deeply rooted assumptions on which

we are accustomed, in particular, at very short length scales we might have

to abandon the notion of a continuous space-time and the associated mat-

hematical construct of a smooth manifold that describes it. Field theory on

noncommutative (NC) space-time is one distinguished approach to QG, and

the one that will be advocated in this thesis. NC field theory is based on the

method of quantization by deformation, originally developed for the purpose

of establishing phase-space quantum mechanics. One speaks of a deformation

of an object/structure whenever there is a family of similar objects/structures

for which we can parametrize their “distortion” from the original, undefor-

med one. In physics, this so-called deformation parameter appears as some

fundamental constant of nature that measures the deviation from the classical

(i.e. undeformed) theory. To deform classical space-time, one introduces an

abstract algebra of NC coordinates, denoted by x̂µ, that satisfy some non-

trivial commutation relations. The simplest case of noncommutativity is the

so-called canonical (or θ-constant) noncommutativity, [x̂µ, x̂ν ] = iθµν ∼ Λ2
NC ,

where θµν are components of a constant antisymmetric matrix, and ΛNC is

a hypothetical length scale at which NC effects become relevant. Instead

of deforming abstract algebra of coordinates, one can introduce space-time

noncommutativity in the form of NC products of functions (fields) of commu-

tative coordinates. These products are called star products (?-products). In

particular, canonical noncommutativity is effected by the Moyal ?-product.

During the previous studies of the theory of NC gravity, it was found that

NC corrections to GR can be obtained by canonical deformation of anti-de

Sitter (AdS) gauge theory of gravity. Starting with a classical action of the

Yang-Mills type, invariant under SO(2, 3) gauge transformations, one obtains

the standard Einstein-Hilbert action with the negative cosmological constant,

after choosing a certain gauge. NC deformation is performed by following the

Seiberg-Witten approach to NC gauge field theory, and the first non-vanishing

NC correction turns out to be quadratic in θµν . This model also predicts a

non-trivial NC deformation of Minkowski space and offers an explanation for

the apparent breaking of diffeomorphism invariance in NC theory. Namely,

the structure of the NC-deformed Minkowski metric suggests that, by assu-

ming canonical noncommutativity, we implicitly choose a preferred frame of

reference - the Fermi inertial frame along a geodesic.
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Building on these results, we proceeded by introducing matter fields wit-

hin the SO(2, 3) framework, in particular, we considered Dirac spinor field,

U(1) gauge field and non-Abelian Yang-Mills gauge field. It turns out that

inclusion of matter fields produces non-vanishing linear NC correction in-

volving various new matter-gravity couplings that appear due to space-time

noncommutativity. This feature is a significant improvement in comparison

to the pure NC gravity model, and an a priori unexpected result. Moreover,

some NC terms pertain even in Minkowski space, effecting NC deformation of

the Dirac equation. Predictions of this model of NC Electrodynamics include

the NC birefringence effect (helicity-dependent energy levels of an electron in

NC space-time) and NC-deformed Landau levels of an electron in background

magnetic field. A recurring theme of the thesis will be the relation between

canonical NC deformation and Wigner-Inönü group contraction.

Finally, we upgraded the model of pure NC gravity to include Supersym-

metry (SUSY). It is well-known that one can define a consistent theory of

extended N = 2 AdS4 Supergravity (SUGRA). This model of SUGRA invol-

ves a pair of Majorana vector-spinor fields that can be mixed to form a pair

of Dirac spinors (charged gravitini) coupled to U(1) gauge field. Besides local

SO(1, 3)×U(1) gauge symmetry, the action is also invariant under complex lo-

cal SUSY. We present a geometric action that involves two “inhomogeneous”

parts: an orthosymplectic OSp(4|2) gauge-invariant action of the Yang-Mills

type that has vanishing first order NC correction, and a supplementary ac-

tion invariant under purely bosonic SO(2, 3) × U(1) ∼ Sp(4) × SO(2) sector

of OSp(4|2), that needs to be added for consistency. This additional action

provides a non-trivial linear NC correction that we calculate explicitly.

Key words: deformation quantization, Moyal product, NC gravity,

Seiberg-Witten map, AdS gauge theory, Orthosymplectic SUGRA

Scientific field: Theoretical physics

Research area: High-energy physics

UDC number: 539.120.226 (043.3)



Rezime

Jedan od najvećih izazova savremene teorijske fizike je usaglašavanje Opšte

teorije relativnosti (OTR) i Kvantne mehanike. Da bismo razrešili problem

“kvantne gravitacije” neophodno je da prevazidjemo neke duboko ukorenjene

pretpostavke na kojima se zasnovaju sve naše dosadašnje teorije. Jedna od

njih je i pretpostavka da je struktura prostor-vremena kontinualna na svim

skalama i da shodno tome odgovara matematičkom konceptu glatke mnogo-

strukosti. Teorija polja na nekomutativnom (NK) prostor-vremenu je jedan

dobro definisani pristup problemu kvantne gravitacije, i taj pristup će biti

zastupljen u ovoj disertaciji. NK teorija polja se zasniva na metodu deforma-

cione kvantizacije, originalno razvijenom radi zasnivanja kvantne mehanike u

faznom prostoru. O deformaciji nekog objekta/strukture govorimo onda kada

postoji familija srodnih objekata/struktura kod koje se odstupanje od nede-

formisanog originala može na odredjeni način paramatrizovati. U fizici se ovaj

tzv. parametar deformacije javlja u vidu neke fundamentalne konstante pri-

rode i predstavlja meru odstupanje od “klasične” (tj. nedeformisane) teorije.

Da bismo deformisali klasično prostor-vreme, uvodimo apstraktnu algebru

nekomutativnih koordinata, u oznaci x̂µ, koje zadovoljavaju neke netrivijalne

komutacione relacije. Najjednostavniji primer je takozvana kanonska (ili θ-

konstantna) nekomutativnost, [x̂µ, x̂ν ] = iθµν ∼ Λ2
NC , gde su θµν komponente

konstantne antisimetrične matrice, a ΛNC hipotetička skala dužine na kojoj

efekti nekomutativnosti postaju značajni. Umesto deformisanja apstraktne

algebre koordinata, nekomutativnost možemo uvesti u vidu nekomutativnih

proizvoda funkcija (polja) običnih komutativnih koordinata. Ovi proizvodi se

nazivaju star-proizvodi (?-proizvodi). Konkretno, kanonskoj nekomutativno-

sti odgovara Mojalov ?-proizvod.

Tokom prethodnih istraživanja teorije NK gravitacije, ustanovljeno je da

se nekomutativna verzija OTR može dobiti kanonskom deformacijom anti-

de Siter (AdS) gradijentne teorije gravitacije. Predloženo klasično dejstvo

Jang-Milsovog tipa, invarijantno na lokalne SO(2, 3) transformacije, svodi se

na standardno Ajnštajn-Hilbertovo dejstvo sa negativnom kosmološkom kon-

stantom, pri odredjenom kalibracionom uslovu. NK deformacija je sprovodena

sledeći Sajberg-Vitenov pristup NK teoriji gradijentnih polja, i ispostavlja se

da je prva nenulta NK korekcija kvadratna po θµν . Ovaj model takodje predvi-

dja netrivijalnu deformaciju prostora Minkovskog i pruža objašnjenje porekla

narušenja opšte kovarijantnosti koje je prisutno u NK teoriji. Naime, struk-

tura NK-deformisane metrike Minkovskog ukazuje na to da, uvodeći kanonsku

nekomutativnost, mi implicitno prelazimo u odredjeni referentni sistem - onaj

koji odgovara Fermijevim inercijalnim koordinatama duž geodezika.
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Polazeći od ovih rezultata, u ovoj tezi smo unapredili SO(2, 3) model čiste

NK gravitacije uvodjenjem polja materije, i to: Dirakovog spinorskog polja,

U(1) i Jang-Milsovog gradijentnog polja. Ispostavlja se da materija proizvodi

nenultu NK korekciju prvog reda u vidu novih tipova interakcije sa gravitaci-

jom, a usled nekomutativnosti prostor-vremena. Ovo je značajan i neočekivan

napredak u odnosu na čistu NK gravitaciju. Štavǐse, neki od novih interak-

cionih članova opstaju čak i u prostoru Minkovskog i uzrokuju deformaciju

Dirakove jednačine. Neka od predvidjanja ovog modela NK elektrodinamike

su efekat NK dvojnog prelamanja (tj. zavisnost energetskih nivoa elektrona od

stanja njihovog heliciteta) i NK-deformisani Landauovi nivoi elektrona u po-

zadinskom magnetnom polju. Pitanje koje će se u ovoj tezi iznova postavljati

tiče se odnos kanonske NK deformacije i Vigner-Inonuove kontrakcije.

Konačno, izvršeno je i uopštenje modela čiste NK gravitacije koje uključuje

supersimetriju. Poznato je da je moguće definisati konzistentnu teoriju N = 2

AdS supergravitacije (SUGRA) u D = 4. U ovom SUGRA modelu imamo

par Majorana vektor-spinora koji obrazuju par Dirakovih vektor-spinora (na-

elektrisana gravitina) kuplovanih sa U(1) gradijentnim poljem. Pored lokalne

SO(1, 3) × U(1) simetrije, dejstvo je invarijantno i na kompleksnu lokalnu

supersimetriju. Predstavićemo geometrijsko dejstvo koje sadrži dva “neho-

mogena” dela: ortosimplektičko dejstvo Jang-Milsovog tipa invarijantno na

lokalne OSp(4|2) transformacije, koje nema NK korekciju prvog reda, i do-

punsko dejstvo invarijanto na čisto bozonski SO(2, 3)×U(1) ∼ Sp(4)×SO(2)

sektor OSp(4|2) grupe, koje se mora dodati radi konsistentnosti sa klasičnom

teorijom. Ovo dopunsko dejstvo poseduje netrivijalnu linearnu NK korekciju.

Ključne reči: kvantizacija deformacijom, Mojalov proizvod, NK gravi-

tacija, Sajberg-Vitenovo preslikavanje, AdS gradijentna teorija, orto-

simplektička SUGRA
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1 Introduction

Our Universe is a Cosmos. This is the fundamental assumption on which we

base our scientific enterprise. In our intellectual struggle, a desire to understand the

universal laws of the physical world and to grasp their ultimate meaning is often

subdued by our own limitations and pragmatism - eventually, we want to be able to

calculate something useful, and produce a working model for some restricted class

of phenomena that are accessible to our current mathematical and technological

resources. As a rule, a relation between profoundness of a certain theory and its

capacity to produce concrete results is inversely proportional - underlying theories,

considered to be more fundamental, are always less operational. It would be a

challenging task, for example, to derive the laws of molecular dynamics starting from

the Lagrangian of the Standard Model (SM) of particle physics with all its intricacies,

although, in principle, this is possible. Therefore, it is an extraordinarily significant

fact, and by no means obvious, that the complex hierarchical organization of the

physical world and the manner in which its layers are intertwined between each other,

make it possible for us to construct well-defined, effective descriptions of phenomena,

reliable only for some restricted set of values of relevant parameters. Every effective

theory is characterized by its domain of applicability (scale), the degrees of freedom

associated with that scale, and symmetries of their dynamical laws. Pushing an

effective theory beyond its area of applicability is typically marked by an appearance

of singularities in its mathematical structure, the prototypical examples being the

Standard Model and the General Theory of Relativity (GR). A lack of constraint

on infinitely small/large quantities of any kind signifies that a theoretical model is

incomplete, in which case it should be replaced by a wider framework able to tame

the infinities. Therefore, it seems reasonable to expect that our progress towards

a hypothetical final “theory of everything” is going to proceed in steps, through a

sequence of effective descriptions of increasing generality, and ever-growing domain

of validity. The transition from a particular effective theory to a more fundamental

one (that contains the former as a limiting case) can be formalized through the notion

of deformation. One speaks of a deformation of an object/structure whenever there is

a family of similar objects/structures for which we can parametrize their “distortion”

from the original, undeformed one. In physics, this so-called deformation parameter

appears as some fundamental constant of nature that measures the deviation from

the classical (meaning undeformed) theory. We can articulate this more precisely

by the following (very abstract) definition.

Definition 1.1. Let X be an object in a certain category C. A deformation of X is

a family of objects Xε ∈ Obj(C) parametrized by ε, such that Xε0 = X for some ε0.
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An effective theory may be regarded as the leading order term in a perturbative

expansion of a more general, deformed theory, in powers of a certain deformation

parameter. In that respect, we perceive the Special Theory of Relativity (STR) as

a deformation of the Newtonian mechanics, the deformation parameter being v/c;

when v/c → 0 (low-speed limit) Newtonian mechanics is restored. Another way to

look at this relation is from the aspect of symmetry. Deformation parameter often

plays the role of a contraction parameter in the Wigner-Inönü (WI) Lie algebra

contraction procedure [1, 2]. As an illustration, consider the homogeneous Lorentz

algebra so(1, 3). It has a total of six generators Mab (rotations of Minkowski space

M4), satisfying the following commutation relations:

[Mab,Mcd] = i(ηadMbc + ηbcMad − ηacMbd − ηbdMac) . (1.1)

After separating generators Mab into three 3-rotation generators Ji = iεijkMjk and

three boost generators Ki = Mi0, we can recast (1.1) into a more explicit form:

[Ji, Jj] = iεijkJk ,

[Ji, Kj] = iεijkKk ,

[Ki, Kj] = −iεijkKk . (1.2)

Now we use the speed of light c as a contraction (deformation) parameter and define

K̃i := Ki/c. In the limit v/c→ 0 we obtain homogeneous Galilean Lie algebra:

[Ji, Jj] = iεijkJk ,

[Ji, K̃j] = iεijkK̃k ,

[K̃i, K̃j] = 0 . (1.3)

Another case that will be important for us, later on, is the WI contraction of anti-de

Sitter (AdS) so(2, 3) algebra into Poincaré algebra.

In this general context, quantum theories are recognized as deformations of the

corresponding classical ones, deformation parameter being the Planck constant ~.

This is the content of the principle of correspondence, one of the most important

guiding principles in physics, due to N. Bohr [3]. It poses a general constraint

on every new-developed theory of physics - besides giving us a refined conceptual

framework to deal with some class of phenomena, it must also be consistent with

the corresponding less accurate theory that precedes it and reduce to that theory in

a certain limit. This paradigm is inherited by the modern physics (especially high-

energy physics), one of its guises being the concept of quantization by deformation.
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1.1 Deformation quantization - quantum mechanics

That quantization (of a classical system) can be realized as a deformation has

already been anticipated by P. Dirac in the early twenties [4, 5]. He was the first

to note the resemblance between the Poisson bracket (Lie bracket for the algebra

of functions on phase space) and quantum commutator, and suggested that it might

be possible to define an associative, but non-commutative, product of functions on

phase space that could encapsulate the non-commutative character of quantum mec-

hanics. The Poisson bracket would then be identified with the leading order term

in the ~-expansion of a certain, more general, “quantum bracket” on phase space

(today know as the Moyal bracket). In this expansion, higher-order terms (those

containing ~) would be responsible for quantum effects, and in the limit ~→ 0 clas-

sical structure would be restored, in accord with the principle of correspondence.

This observation was the first incentive for the theory of star-products (?-products)

- associative, but non-commutative, deformations of ordinary point-wise products

of functions on classical phase space - that lies at the heart of the method of defor-

mation quantization.

Another important source of inspiration for the theory of ?-products came from

the work of H. Weyl, J. von Neumann and E. Wigner. In [6] Weyl defined a certain

formal map - the Weyl transform - that takes a function on phase space and assigns

to it an operator on Hilbert space (the so-called associated Weyl-operator). This

construction relates the theory of ?-products and Weyl quantization procedure based

on the symmetric ordering scheme. Eventually, it became clear that Weyl transform

is not an intrinsically special quantization prescription, and that deformation qu-

antization provides a more general framework. In 1931, von Neumann utilized the

Weyl transform as an equivalent abstract representation of the Heisenberg algebra

[7]. He worked out an analogue of operator multiplication in phase space, and thus

effectively discovered the rule governing the noncommutative product of the corre-

sponding phase space functions — an early version of the ?-product. Nevertheless,

von Neumann ignored his own discovery concerning the ?-product and just procee-

ded to postulate the standard correspondence rules between classical and quantum

mechanics [8].

Wigner, on the other hand, was searching for an alternative formulation of Qu-

antum Mechanics (QM), an operator-free formulation that could be defined directly

on classical phase space. He developed a theory of quasi-probability distributions

(Wigner functions) [9], to account for quantum corrections to classical statistical

mechanics. A central object in his approach is the Wigner transform, a map that

3



takes an operator on a Hilbert space and assigns to it a function on phase space.

For a self-adjoint operator, this function is real. In particular, to a general quantum

state (statistical operator) Wigner transform assigns a quasi-probability distribution

that can be used to calculate the statistical average of any classical observable while

accounting for quantum effects. As it turns out, Wigner transform is an inverse of

Weyl transform, and the whole construction is therefore known as the Wigner-Weyl

(WW) correspondence. It is proved that WW correspondence is a one-to-one map

between phase space functions and quantum operators.

In his 1946 thesis [10], H. L. Groenewold explored the consistency of the general

von Neumann’s quantization prescription. As a tool, he utilized a fully developed

formulation of the WW correspondence, regarded as an invertible transform rather

than a general quantization rule. The essence of this correspondence is the ?-product

(today known as the Moyal-Weyl-Groenewold product, or the Moyal product, for

short). This realization helped Groenewold to prove that it is not possible to find

a fully consistent quantization procedure (in the von Neumann sense), meaning

that it is not possible to promote classical Poisson bracket of any two functions

onto their quantum commutator. This result is known as the Groenewold’s no-

go theorem [11], and it was one of the main reasons to look for another method

of quantization. Groenewold’s observation, and his counterexamples, have been

generalized and codified to what is now known as the Groenewold – Van Hove

theorem [12]. The Wigner transform of quantum commutators turns out to be a

generalization of the Poisson bracket (the Moyal bracket), which contains Poisson

bracket as its classical limit.

At the same time, J. H. Moyal was developing essentially the same theory but

from a different point of view [13], one that is more related to statistical mecha-

nics. He focused on all expectation values of quantum operator monomials, q̂np̂m,

symmetrized by Weyl ordering. Moyal realized that these expectation values could

be generated out of a classical-valued characteristic function of phase space, which

he later recognized as the Wigner transform of a statistical operator. He obser-

ved that many familiar operations of standard QM could be apparently bypassed,

and verified that the uncertainty principle is incorporated in this structure. Less

systematically than Groenewold, Moyal also obtained the quantum evolution of the

Wigner function by deforming the classical Poisson bracket into the Moyal brac-

ket, thus establishing a more comprehensive notion of the “~ → 0” limit based on

asymptotic the ~-expansion — thus contrasting the method of taking the limit of

large occupation numbers, or computing expectation values in coherent quantum

states.
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Before the advent of deformation quantization techniques, there seemed to be

no organic connection between classical and quantum systems, and the workings

of the correspondence principle were somewhat obscure. Functorial quantization

[14] is the most general framework for defining quantization, based on the implicit

assumption that classical and quantum systems are, as far as their mathematical

structure is concerned, categorically different. To define a quantization procedure,

one has to construct a covariant functor (an arrow preserving functor) that assigns

to each classical system (phase space) a quantum system (Hilbert space). Classical

systems are properly described by symplectic category S. Its objects are symplectic

manifolds (M,ω) and its maps are symplectomorphism (canonical transformations).

On the other hand, quantum systems are described by unitary category U . Its

objects are Hilbert spaces (H, 〈·, ·〉) and its maps are unitary transformations. It

seems that a reasonable definition of a quantization of a classical system would,

therefore, be a covariant functor F : S → U satisfying the following conditions:

1. To every symplectic manifold (M, ω) is associated a Hilbert space F(M, ω) =

(F [M],F [ω]). In this Hilbert space, F [ω] : F [M] × F [M] → C is the inner

product.

2. To every symplectomorphism ϕ : (M, ωM)→ (N , ωN ) is associated a unitary

transformation F [ϕ] : F(M, ωM)→ F(N , ωN ).

The question is, however, whether it is possible to find a functor consistent with

the actual theory of quantum mechanics, that is, with Schrödinger quantization. As

it turns out, there can be no such functor that could provide a physically sensible

quantization. This is a strong motivation to consider an alternative approach to the

problem of quantization, in general.

In 1978, F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer

published a milestone papers that set the course of the modern theory of defor-

mation quantization [15, 16]. Their goal was to endow classical phase space with

noncommutative structure by deforming the commutative algebra of functions on

phase space. The ordinary commutative product is replaced by a suitable non-

commutative ?-product (which ?-product is to be applied, depends on the details

of the deformation procedure), thus yielding a deformed algebra capable of captu-

ring the noncommutative character of quantum mechanics. For example, the Moyal

?-product is associated with the constant phase space deformation, using ~ as a

deformation parameter. Since the mapping of brackets (Poisson bracket to Moyal

bracket) need only be satisfied asymptotically, up to O(~2), so as to find classical
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mechanics in the limit where ~ → 0, the inconsistencies found by Groenewold are

resolved. Although we cannot claim that deformation quantization amounts to a de-

finite solution to the problem of quantization, it does provide the most transparent

formulation of the correspondence principle. The method of deformation quantiza-

tion became fully appreciated after M. Kontsevich’s proof of his famous Formality

conjecture [17]. A corollary of this conjecture is that every classical system (properly

described by a Poisson manifold) can be (almost) uniquely quantized by deforma-

tion [18], in accord with the principle of correspondence and the original Dirac’s

intuition. For a more detailed account on the subject’s history see [19, 20].

1.2 Deformation quantization - quantum gravity

Besides its role in establishing a completely new interpretation of QM, deforma-

tion philosophy found its most attractive application in the study of the fundamental

structure of space-time itself. To resolve the conundrum of “Quantum Gravity”, we

must be prepared to go beyond the usual assumptions on which we are accusto-

med, in particular, at very short length scales (very high energies) we might have

to abandon the notion of a continuous space-time, and the associated mathemati-

cal construct of a smooth manifold that describes it [21, 22]. There is a famous

heuristic argument that supports this attitude. By combining (perhaps naively)

the basic principles of QM and GR - the uncertainty principle and the geometri-

cal character of gravity, respectively - seems to imply that there exists a natural

“defence mechanism” preventing us from observing the structure of the physical

world at the Planck scale (lP ∼ 10−35m). Namely, Heisenberg’s uncertainty rela-

tions ∆q∆p ≥ ~/2 imply that in order to probe smaller length scales, we need to

provide larger amounts of energy/momentum. This fact, however, brings us in con-

flict with GR, if we assume continuity of space-time for all scales [23]. According

to GR, a sufficient amount of energy-momentum density creates a black hole with

a Schwarzchild radius RS = 2MGN/c
2 proportional to the energy-momentum den-

sity. Therefore, with a further increase in energy, the size of the black hole increases

proportionally, thus preventing us from accessing the region within. There is an un-

certainty relation between Schwarzchild radius and radial coordinate ∆Rs∆r ≥ l2p
that predicts the appearance of virtual black holes and wormholes (quantum foam)

on the Planck scale [24, 25]. It follows from the Heisenberg relation ∆(Mc)∆r ≥ ~/2
that gets saturated at the Planck scale (mpc)lP = ~/2 (where mP ∼ 10−8kg is the

Planck mass). It seems that beyond the Planck scale, space-time loses its empirical

meaning (as we know it), and since we do believe that there is physics beyond the

Planck wall, this contradiction has to be resolved.
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Over the course of the 20th century several well-established and quite distinct

approaches to quantum gravity appeared. In spite of being different in so many

respects, all of them, however, recognize that the crucial problem lies in the notion of

continuity of space-time and the principle of locality that goes with it. To transcend

this deeply rooted assumption, the proponents of String Theory [26] suggest that

the fundamental building blocks of nature are not point-like elementary particles

interacting at a single space-time point, but tiny vibrating string (or, more generally,

branes) that, due to their extension, interact non-locally. Each vibrational mode

of a string corresponds to a different particle (infinitely many of them) including

graviton - a quantum of the gravitational field. The most attractive features of this

theory are its unification power and a plethora of exotic mathematical structures

such as Supersymmetry (SUSY) and extra (compactified) spatial dimensions. In

String Theory, space-time is an emergent phenomenon grounded in the dynamics

of the fundamental strings. The theory lacks ability to reproduce the known low-

energy phenomenology (except gravity). Then there is Supergravity (SUGRA), in

its simple and extended versions. SUSY greatly improves the renormalizability of

non-gravitational gauge field theories through loop cancellation and offers a natural

solution to the hierarchy problem. To include gravity, SUSY is promoted into a

gauge symmetry [27–29], the corresponding gauge field being the gravitino spin-3/2

field. It is a well-developed theory with great unification capacity, but it is not

complete. Others claim space-time itself to have a discrete, granular structure and

define the “quantum of volume”. This is the theory of Loop Quantum Gravity,

and it most faithfully preserves the deep idea of background independence that lies

at the heart of GR [30]. Then, there is an algebraic approach of Noncommutative

Geometry where one abandons the geometrical notion of a point and instead defines

a deformed space-time in terms of its C?-algebra of functions [31]. Other approaches

include Causal Set Theory [32], Quantum Measure Theory [33], Consistent Histories

[34], Euclidean path integral approach [35], Asymptotic safety program [36], some

recent developments such as gauge-gravity duality (AdS/CFT correspondence) and

EPR = ER conjecture [37, 38].

The concept of “space-time noncommutativity” appeared already in the thirties,

when W. Heisenberg suggested that the problem of UV-divergences in Quantum

Field Theory (QFT) could perhaps be solved by postulating non-vanishing commu-

tation relations between coordinate operators, analogous to the canonical commu-

tation relations between a coordinate and its conjugated momenta [39]. The first

model of NC geometry came from Snyder [40] who showed that one could have

Lorentz symmetry in deformed space-time. However, this line of development was

overshadowed by the success of the renormalization program of Schwinger, Feynman
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and Tomonaga. Nevertheless, noncommutativity started to appear unexpectedly in

various situations. After realizing the connection between String Theory and Non-

commutative geometry, it once again became an interesting topic in high energy

physics. Namely, the theory of open strings in a Kalb-Ramond background field

Bµν implies that the endpoint coordinates of a bosonic string attached to a D-brane

do not commute [41]. There are more elementary examples coming from classical

mechanics. If we take a single particle of mass m and charge q, constrained to

move in the xy-plane, and apply homogeneous magnetic field in the z-direction, the

Poisson bracket of particle’s x and y coordinates is not equal to zero in the limit

of strong magnetic field. Making a transition to quantum mechanics, we obtain

[x̂, ŷ] ∼ 1/B. The geometrical notion of a point lacks meaning in NC spaces, and

it makes no sense to introduce ordinary coordinates. An important mathematical

result of Gelfand and Naimark [42, 43] is that there is an equivalence between Haus-

dorff topological spaces and commutative C?-algebras. This means that we do not

have to regard space as a set of points in order to describe its properties; instead,

we can use the commutative algebra of functions defined on that space. NC space,

therefore, corresponds to an NC algebra of functions.

There are many ways in which noncommutativity can be introduced. One di-

stinguished approach, and the one that will be advocated in this thesis, is Noncom-

mutative (NC) Field Theory - field theory on noncommutative space-time - based

on the method of ?-product NC deformation [22, 44]. This way of “quantizing”

space-time is essentially different from the standard QFT quantization procedure

for matter fields. Loosely speaking, the idea is that different space-time dimensions

(usual 3 + 1) are mutually “incompatible”, in a sense that there exist a lower bound

for the product of uncertainties ∆xµ∆xν for a pair of two different coordinates. De-

formation quantization formalizes this notion of “pointlessness” by introducing an

abstract algebra of NC coordinates as a deformation of the classical space-time struc-

ture described by ordinary commuting coordinates. These NC coordinates, denoted

by x̂µ, satisfy some non-trivial commutation relations, and so, it is no longer the

case that [x̂µ, x̂ν ] = 0. Abandoning the concept of commutative (classical, smooth)

space-time leads to various new physical effects. Other ways of introducing space-

time noncommutativity include spectral triplets [45], NC vierbein formalism [46],

matrix models [47]. These approaches are not entirely independent of each other.

For example, the NC algebra of Schwartz functions, defined by Moyal ?-product,

is actually a noncommutative spectral triplet [48]. Spectral triplet composed of a

Hilbert space, algebra of operators defined on that space, and a Dirac operator,

constitutes a basis of the Connes’ approach to noncommutativity.
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The simplest case of noncommutativity is the so called canonical (or θ-constant)

noncommutativity,

[x̂µ, x̂ν ] = iθµν ∼ Λ2
NC , (1.4)

where θµν are components of a constant antisymmetric matrix, and ΛNC is the yet

unknown length scale at which NC effects become relevant. Deformation parame-

ter is fundamental constant, like the Planck length or the speed of light. Other

important choices include Lie algebra-like deformation and κ-deformation. Instead

of deforming abstract algebra of coordinates, noncommutativity (deformation) of

space-time can be encoded in the form of NC products of functions (fields) on

classical space-time. These products are called star products (?-products). In par-

ticular, to establish canonical noncommutativity, we use the Moyal ?-product, as a

deformation of the ordinary commutative product of fields,

(f̂ ? ĝ)(x) =e
i
2
θµν ∂

∂xµ
∂
∂yν f(x)g(y)|y→x

=f(x) · g(x) +
i

2
θµν∂µf(x) · ∂νg(x) +O(θ2) .

(1.5)

The first term in the expansion of the exponential is the ordinary point-wise multi-

plication of fields, and the higher-order terms are the NC (quantum) corrections.

In Section 2, we will introduce Moyal ?-product more formally, both in QM and

NC gauge field theory. After that, in Section 3, we study the Seiberg-Witten method

of constructing NC gauge field theory that will be used throughout the thesis. Anti-

de Sitter gauge field theory, its relation to GR, and its canonical NC deformation

are discussed in Section 4. There, we present, in some detail, the SO(2, 3)? model

of NC gravity. In the remaining sections, we introduce matter fields (Dirac spinor

field, U(1) gauge field and non-Abelian Yang-Mills field) coupled to NC gravity

(Sections 5−7, respectfully). This constitutes the main part of the thesis. Finally, in

Section 8, we upgrade the SO(2, 3)? model of pure NC gravity to include SUSY, and

consider NC deformation of N = 2 AdS SUGRA in D= 4, based on orthosymplectic

gauge supergroup OSp(4|2). In the last section, we propose some new directions of

research.
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2 Moyal-Weyl-Groenewold ?-product

The uncertainty principle of QM forces us to abandon the classical concept of

phase space, as a space of dynamical states of physical systems, and promote ge-

neralized coordinates and their canonically-conjugated momenta into mutually in-

compatible self-adjoint operators acting on a Hilbert space. In the spirit of defor-

mation philosophy, quantization procedure can be understood as an act of imposing

a noncommmutative geometry structure on classical phase space. This deformed,

“quantum phase space”, is the prime example of a noncommuttive space ever to be

studied. Therefore, to begin with, we will introduce the Moyal-Weyl-Groenewold

(MWG) ?-product in the context of phase space quantum mechanics, where it was

originally founded. By studying the method of deformation quantization of classi-

cal systems we will become familiar with the theory of ?-products, and prepare the

ground for the next section, where we define the abstract concept of NC space-time

on which NC field theory is based.

2.1 ?-product in quantum mechanics

The proper framework for studying classical mechanics is symplectic geometry.

This is the setting in which Kontsevich proved his formality conjecture [17]. Consider

a real vector space V of dimension m, and let Ω : V 2 → R be a bilinear, skew-

symmetric map. If for all w ∈ V , Ω(u,w) = 0 implies u = 0, then the map Ω is

called symplectic or non-degenerate; also, (V,Ω) is called symplectic vector space.

The property of non-degeneracy implies that V must have even dimension.

Definition 2.1. (Symplectic Manifold). The pair (M, ω) of smooth manifold M
and 2-form field ωp : TpM× TpM→ R is called a symplectic manifold if dω = 0 (if

this is the case the form is said to be closed), and if ωp is symplectic for all p ∈M .

The trivial example is M = R2n with ω =
∑n

i=1 d xi ∧ d xi.

The algebra of smooth functions C∞(M) on a symplectic manifold (M, ω)

can be endowed with a Poisson bracket, which turns it into a Poisson manifold

(C∞(M), {·, ·}). Non-degeneracy of the symplectic 2-form ω implies that there is a

unique vector field Xf assigned to each function f ∈ C∞(M) such that ω(Xf , ·) =

df . The Poisson bracket {·, ·} : C∞(M)× C∞(M)→ C∞(M) is defined by

{f, g} = ω(Xf , Xg) ; (2.6)

it is bilinear, skew-symmetric and satisfies the Jacobi identity and the Leibniz rule.
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Therefore, all classical systems that can be described in terms of symplectic

manifolds carry a natural Poisson structure. The Poisson algebra (C∞(M), {·, ·}) of

smooth functions on M is the algebraic structure that one should deform in order

to quanatize the classical system. Let Q be a configuration space of some classical

system with n degrees of freedom. The corresponding phase space has a natural

structure of a symplectic manifold. It is defined as a pair (T ∗Q, ω) consisting of the

cotangent bundle of Q and the symplectic form ω =
∑n

i=1 dqi∧dpi. Poisson bracket

is the standard bracket from the Hamilton’s canonical formalism,

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi
∂g

∂qi

)
. (2.7)

For simplicity, we will consider only the configuration space Q = R (one degree of

freedom, no constraints). In that case, phase space manifold M can be identified

with R2. The dynamical state of a classical system is completely determined by a

pair (q, p) ∈ M. Classical observables, like angular momentum and hamiltonian,

can now be seen as smooth functions of (q, p). In general, classical observables f are

elements of the commutative C∗-algebra (with ordinary point-wise multiplication)

of smooth functions on phase space, C∞(M) = {f : M→ R | f is smooth}. This

algebra carries a complete topological information on the phase space (Gelfand-

Naimark theorem). In this setting, a systematic way to quantize a classical theory

was introduced by H. Weyl [6], and was later called the Weyl quantization. He

introduced a formal mapping - the Weyl transform - that associates a quantum

operator Ŵ [f ] to every phase space function f ∈ C∞(M). The procedure relies

heavily on the invertible character of the Fourier transform on a certain class of

well-behaving functions. The inverse of the Weyl transform is the already mentioned

Wigner transform and therefore, the whole one-one correspondence is known as

theWeyl-Wigner (WW) correspondence.

Definition 2.2. The WW correspondence consist of the following steps:

1. Let a, b ∈ R, define the Fourier transform of f ∈ L2(R2) as

f̃(a, b) =

∫ ∫
dqdp exp[−i(ap+ bq)]f(q, p) . (2.8)

2. Perform a formal substitution p→ p̂, q → q̂ and define

Ŵ [f ](q̂, p̂) =

∫ ∫
da

2π

db

2π
exp[i(ap̂+ bq̂)]f̃(a, b) , (2.9)

which is known as the associated Weyl-operator.
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For mathematical simplicity, the procedure is only defined for functions f ∈
L2(R2). Since this space is a Hilbert space, integration theory tells us that the Fou-

rier transform and its inverse are well-defined. The fact that this definition is not yet

satisfactory is seen by the fact that it does not include even the harmonic oscillator’s

hamiltonian H(q, p) = c(q2 + p2) (c = const); nevertheless, the procedure can be

extended to all physical relevant functions, such as polynomials [10]. The essence of

the ?-product approach to QM is that it captures the noncommutative character of

QM directly on phase phase. For a given pair of Weyl-operators associated to a pair

of phase space functions, we want to find the phase space function that corresponds

to the composition of the two Weyl operators. This will be the noncommutative

MWG ?-product of the two functions that we started with.

Let f, g ∈ C∞(M). The goal is to find a function h ∈ C∞(M) such that

Ŵ [f ]Ŵ [g] = Ŵ [h] (on the left hand side, we have ordinary operator composition).

Moreover, we want to obtain h as a function of f and g. By definition,

Ŵ [f ]Ŵ [g] =

∫ ∫
da

2π

db

2π
ei(ap̂+bq̂)f̃(a, b)

∫ ∫
da′

2π

db′

2π
ei(a

′p̂+b′q̂)g̃(a′, b′) . (2.10)

Mixing the integrals, the exponents can be put together by using a variant of the

Baker-Campbell-Hausdorff (BCH) formula. It states that for two linear operators

A and B that both commute with their commutator [A,B], the following holds

expA expB = exp(A+B) exp([A,B]/2) . (2.11)

Applying this result yields

exp[i(ap̂+bq̂)] exp[i(a′p̂+b′q̂)] exp[i((a+a′)p̂+(b+b′)q̂)] exp[i~(ab′−ba′)/2] . (2.12)

Performing the shifts a→ a− a′, b→ b− b′ yields the requested expression:

Ŵ [f ]Ŵ [g] =

∫ ∫
da

2π

db

2π
ei(ap̂+bq̂)(f̃ ?~ g)(a, b) = Ŵ [f ?~ g] , (2.13)

where we introduced

(f̃ ?~ g)(a, b) =

∫ ∫
da′

2π

db′

2π
f̃(a− a′, b− b′)ei~((a−a′)b′−(b−b′)a′)/2g̃(a′, b′) . (2.14)

The MWG ?-product can now be defined as inverse Fourier transform of f̃ ?~ g,

(f ?~ g)(q, p) := F−1[f̃ ?~ g] =

∫ ∫
da

2π

db

2π
ei(ap̂+bq̂)(f̃ ?~ g)(a, b) . (2.15)
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Note that the star product depends on the classical variables (q, p), and that it

defines a smooth function on phase space; it is therefore a product on the algebra

of functions on phase space, h ∈ C∞(M), and it can be easily verified to be non-

commutative. To obtain the standard Moyal product’s form, as found in the papers

of Moyal and Groenewold, it suffices to perform the substitutions a, a′ → −i∂/∂p,
b, b′ → −i∂/∂q under the inverse Fourier transform, and to remark that derivatives

of smooth functions commute; therefore, we have

(f ?~ g)(q, p) = f(q, p) exp

[
i~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
g(q, p)

= (f · g)(q, p) +
∞∑
n=1

(
i~
2

)n
Cn[f, g](q, p) , (2.16)

where “·” stands for the commutative point-wise product, and we introduced

Cn[f, g](q, p) =
1

n!
f(q, p)

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)n

g(q, p) . (2.17)

The Moyal bracket is defined by

{f, g}~ = [f ?~, g]/i~ = {f, g}+O(~) , (2.18)

where {·, ·} stands for the standard Poisson bracket on C∞(M). Therefore we have

f ?~ g → f · g and {f, g}~ → {f, g} as ~→ 0. Note that this is exactly what Dirac

had anticipated. Moreover, one can easily check that MWG ?-product correctly

reproduces the standard QM commutation relations between between a conjugated

pair of coordinate and momentum (treated as classical functions on phase space)

x ?~ p− p ?~ x = i~ . (2.19)

Also, the evolution equation of some classical observable f in deformed classical

mechanic involves the Moyal bracket

df

dt
=

1

i~
(f ?~ H −H ?~ f) = {f,H}+O(~) . (2.20)

Since Ŵ is a linear operator, it follows that [Ŵ [f ], Ŵ [g]] = Ŵ ([f ?~, g]). This amo-

unts to a homorphism of Lie algebras; the Lie bracket on the left is the commutator

bracket on the space of quantum operators, and on the right we have the Moyal

commutator on C∞(M).
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Therefore, we may conclude that by introducing associative, but noncommuta-

tive, MWG ?-product on the space C∞(R2) of smooth functions on R2, we indeed

implement a deformation of the classical Poisson algebra (C∞(R2), {·, ·}), the defor-

mation parameter being ~, and promote classical phase space into a noncommutative

space. Weyl transform defines a homomorphism between the ?-deformed Lie algebra

of functions on phase space R2 and the Lie algebra of operators on the Hilbert space

L2(R2) of square-integrable functions. A quantum mechanical system is completely

determined by its C?-algebra of operators, and the Stone-von Neumann theorem

provides the unique unitary representation of this algebra that respects canonical

quantization [7]. Since Moyal commutator inherits the properties of a quantum

commutator, we have constructed a complete, alternative formulation of quantum

mechanics directly on phase space.

However, it is not quite clear whether WW correspondence (and therefore the

MWG ?-product) provides the physical quantization procedure, since it relates clas-

sical systems involving commuting observables to quantum systems involving ope-

rators that do not commute in general, and in the latter case, different choices

of ordering yield different quantum operators. As a simple example, consider the

function f(q, p) = q · p = p · q = f(p, q). Its quantum counterpart is not defined

unambiguously, namely f(q̂, p̂) = q̂p̂ = p̂q̂+ i~ 6= p̂q̂ = f(p̂, q̂). The two natural cho-

ices of ordering, standard (or naive) and symmetric (or Weyl), lead to two different

?-products. The two are related by a bijective linear map. We will show that the

symmetric ordering corresponds to the MWG ?-product.

Definition 2.3. (Naive quantization). The linear operator QN : C[q, p]→ Diff(R)

is defined by

1→ QN(1) = I , q → QN(q) = q̂ , (2.21)

p→ QN(p) = p̂ , qn · pm → q̂np̂m , (2.22)

where C[q, p] is the ring of complex polynomials of two variables and Diff(R) is the

space of differential operators with polynomial coefficients in the space C∞(R), i.e. an

element D ∈ Diff(R) takes the form D =
∑N

k=0 fk∂
k/∂qk where f0, ..., fN ∈ C[q].

First, note that QN is a well-defined map since it is defined on a basis of the ring

C[q, p]; it is extended to the entire ring by C-bilinearity. Furthermore, note that QN

is bijection since its inverse is evidently well-defined. By applying this procedure to

the aforementioned example f(q, p) = q · p would yield QN(p · q) = QN(q · p) = q̂p̂ =

p̂q̂+i~ 6= QN(p)QN(q). This means that QN is not a homomorphism of (associative)
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algebras. However, classically, when ~ → 0, this map turns into a homomorphism.

Using the naive quantization procedure, it is possible to construct an associative NC

product on C[q, p] that almost satisfies the correspondence principle. The idea is to

pullback the NC multiplication in the space of differential operators Diff(R) to the

ring C[q, p] using the bijective map QN , and define a ?-product that is compatible

with the naive quantization procedure; we call this product ?N .

Theorem 2.1. Let f, g ∈ C[q, p] and φ ∈ C∞(R). Then,

f ?N g = Q−1
N (QN(f)QN(g)) =

∞∑
m=0

(~/i)m

m!

∂mf

∂pm
∂mg

∂qm
= exp((~/i)∂p ⊗ ∂q)(f, g)

(2.23)

defines an associative NC product on the ring C[q, p].

Since QN is a bijective linear map, the associativity of the product in Diff(R)

directly carries over to ?N . The former is generally noncommutative, and so the

same holds for the latter. In the classical limit we get

f ?N g = fg − i~∂f
∂p

∂g

∂q
+O(~2) , (2.24)

which almost satisfies the correspondence principle. Note also that QN is a ho-

momorphism of algebras with respect to the ?N -product: for all f, g ∈ C[q, p],

QN(f ?N g) = QN(f)QN(g). This means that, although the correspondence princi-

ple is not exactly satisfied, QN does define a complete quantization by deformation.

To obtain a physical deformation quantization, one that satisfies the correspon-

dence principle, we introduce an operator QS symmetric under the exchange q̂ ↔ p̂.

Definition 2.4. (Symmetric quantization) The linear operator QS : C[q, p] →
Diff(R) is defined on the basis of monomials of the ring C[q, p] by

1→ QS(1) = I , q → QS(q) = q̂ , (2.25)

p→ QS(p) = p̂ , qn · pm → QS(qn · pm) = Sn,m(q̂, p̂) . (2.26)

Function Sn,m(q̂, p̂) is a polynomial in q̂, p̂, symmetric under the exchange q̂ ↔ p̂

and it is given by

Sn,m(q̂, p̂) =

(
∂n+m

∂xn∂ym
exq̂+yp̂

)
|x,y=0 . (2.27)
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The quantization operator QS is extended to the whole ring by C-bilinearity. Again,

by invoking the BCH formula and noting that q̂ and p̂ commute with their commu-

tator, we can obtain the connection between QS and QN :

QS(exq+yp) = exq̂+yp̂ = exp[~xy/2i]exq̂eyp̂ = exp[~xy/2i]QN(exqeyp)

= exp[~xy/2i]QN(exq+yp) = QN(exp[~xy/2i](exq+yp)) . (2.28)

So there is a bijective map N : C[q, p]→ C[q, p] defined by

Nf(q, p) = exp[(~/2i)∂2/∂q∂p]f(q, p) , (2.29)

linking the two orderings by QN(Nf) = QS(f) for all f ∈ C[q, p]. Note that

N ’s inverse is given by N−1 = exp[−(~/2i)∂2/∂q∂p], so QN(f) = QS(N−1f) for

all f ∈ C[q, p]. Since it was shown that QN(Nf) = QS(f) for all f ∈ C[q, p],

the isomoprphism of the two ?-products follows directly from Theorem 2.1. The

associativity of the product in Diff(R) carries over to ?S, since QS = QN ◦N is a

bijection. Hence, ?S is also an NC product on C[q, p].

Theorem 2.2. Let f, g ∈ C[q, p] and φ ∈ C∞(R). Then,

f ?S g = Q−1
S (QS(f)QS(g)) =

∞∑
m=0

(~/i)m

m!

∞∑
k=0

(
m

k

)
(−1)m−k

∂mf

∂qk∂pm−k
∂mg

∂qm−k∂pk

(2.30)

defines an associative NC product on the ring C[q, p]. Moreover this product is

isomorphic to the product ?N of naive quantization via the linear bijective map N :

N(f ?N g) = (Nf) ?S (Ng) , for all f, g ∈ C[q, p]. (2.31)

Operator QS is a homomorphism of algebras with respect to ?S: for all f, g ∈
C[q, p] we have QS(f ?S g) = QS(f)QS(g). This time, however, we have the following

asymptotic relation:

f ?S g = f · g +
i~
2
{f, g}+O(~2) . (2.32)

Therefore, operatorQS defines a deformation quantization on the ring of polynomials

C[q, p] in the sense that to every function in the ring, it associates a differential

operator that acts on the space C∞(R), and ?S-product captures the NC character

of these differential operators transferring it back to C[q, p]. Moreover, ?S-product

satisfies the correspondence principle.
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It turns out that ?S-product, induced by the symmetric quantization, is exac-

tly the same as the MWG ?~-product induced by the WW-correspondence. By

definition, for any f, g ∈ C[q, p],

(f ?S g)(q, p) =
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
m

k

)
(−1)m−k

∂mf(q, p)

∂qk∂pm−k
∂mg(q, p)

∂qm−k∂pk

=
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
n

k

)
f(q, p)

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂q

−→
∂

∂p

)m

g(q, p)

= f(q, p) exp

[
i~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂q

−→
∂

∂p

)]
g(q, p)

= (f ?~ g)(q, p) . (2.33)

Therefore, for all f, g ∈ C[q, p], we have f ?S g = f ?~ g. This means that although

the MWG product is only defined on L2(R2), apparently its definition also works

for functions in the ring C[q, p]. Since symmetric quantization is well-defined, we

see now that the Weyl transform of polynomial functions, such as the harmonic

oscillator hamiltonian, is also well-defined. Moreover, symmetric quantization is in

one-one correspondence with naive quantization which is a bijective quantization.

2.2 Noncommutative space-time

Classical phase space is an abstract space of states, and not an actual coordinate

space R3. However, classical space-time is also described by a smooth manifold

and a commutative algebra of fields defined on it. Therefore, we should be able to

apply the ?-product formalism to obtain its deformation. This approach leads us to

an algebraic definition of a “quantum”, noncommutative space-time. The following

exposition relies heavily on [22].

To deform the algebraic structure of continuous space-time, we first consider a

unital, associative, freely generated algebra of formal polynomials over the field of

complex numbers, i.e. C[x1, ..., xN ]. It is a noncommutative analogue of a polyno-

mial ring, and in return, a polynomial ring may be regarded as a commutative free

algebra. The basis of C[x1, ..., xN ] consists of all finite formal products of N elements

x1, ..., xN (“coordinates”) including the unit element 1 which is of zero order. The

product of two basis elements is naturally defined by concatenation:

(xi1xi2 ...xip)(xj1xj2 ...xjq) = xi1xi2 ...xipxj1xj2 ...xjq . (2.34)
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There are equivalence classes in C[x1, ..., xN ] defined by the relation Rx : [xµ, xν ] = 0

that generates a two-sided ideal in C[x1, ..., xN ]. The quotient

Px =
C[x1, ..., xN ]

IR
(2.35)

is the algebra of polynomials in N commuting elements. This algebra can be exten-

ded by introducing a parameter h, and considering the algebra C[x1, ..., xN ][[h]] of

formal power series in h with coefficients in C[x1, ..., xN ]. The h-extension of Px is

the quotient

Ax =
C[x1, ..., xN ][[h]]

IR
. (2.36)

This is the algebra of commuting coordinates of a classical space-time that we want

to deform by introducing NC coordinates x̂µ. The deformation is imposed on the

level of the relation Rx by making it non-trivial. In general,

R̂x : [x̂µ, x̂ν ]− ihCµν(x̂ν) = 0 , (2.37)

where Cµν(x̂) ∈ C[x̂1, ..., x̂N ][[h]]. For h = 0 we consistently obtain the original

algebra of commuting coordinates Ax. The deformed relations define a two sided

ideal IR̂ in C[x̂1, ..., x̂N ][[h]] spanned by the elements of the form

(x̂...x̂) ([x̂µ, xν ]− ihCµν(x̂ν)) (x̂...x̂) , (2.38)

where (x̂...x̂) stands for an arbitrary product of NC coordinates from C[x̂1, ..., x̂N ].

Finally, the quotient

Âx̂ =
C[x̂1, ..., x̂N ]

IR̂
(2.39)

is the algebra of NC coordinates x̂ - a deformation of the original commutative

structure Ax.

There are several important examples of such algebras that we should mention.

First, we have constant deformation, with x̂-independent Cµν . This is the analog of

the Heisenberg phase space algebra, and it is therefore called canonical (θ-constant)

deformation:

[x̂µ, x̂ν ] = ihθµν , (2.40)

with Cµν(x̂) ≡ θµν = −θνµ ∈ R. Then there is Lie algebra type of deformation, with

deformation functions Cµν(x̂) linear in x̂,

[x̂µ, x̂ν ] = ihfµνρ x̂ρ . (2.41)
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In this case, the algebra Âx̂ of NC coordinates is the universal enveloping algebra

of the Lie algebra defined by (2.41). A particular example would be

[x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ) , (2.42)

with real parameters aµ. In a basis where ai = 0 for i 6= N and aN = 1/κ we

can identify this algebra with the κ-deformation algebra. To be consistent with the

reality property (xµ)∗ = (xµ) we demand a conjugation for x̂ as well (x̂µ)∗ = x̂µ,

and (x̂µx̂ν)∗ = (x̂ν)∗(x̂µ)∗. This implies (Cµν)∗ = −Cνµ = Cµν .

The vector space of Ax can be decomposed into finite dimensional subspaces Vr

spanned by the monomials of degree r. A basis in Vr is comprised of the monomials

xi1 ...xir with i1 ≤ ... ≤ ir. Consider the vector space Fr = ⊕rs=0Vs spanned by

all monomials up to degree r. We require that vector space F̂r in Âx̂ of all NC

polynomials up to degree r to have the same dimension as Fr. We also require the

ordered monomials up to degree r, that is x̂i1 ...x̂is with i1 ≤ ... ≤ is and 0 ≤ s ≤ r,

to constitute a basis in F̂r. This is the Poincaré-Birkhoff-Witt (PBW) property of

NC algebra Âx̂. For canonical deformation and Lie algebra deformation the PBW

property holds (PBW theorem). If algebra Âx̂ has PBW property, the set of all

monomials ordered with respect to given fixed ordering forms a basis. A natural

choice, but not the only one, is the symmetric ordering that gives fully symmetrized

monomials. The linear span of the basis elements of degree r defines a vector space

V̂r. By construction, this space has the same dimension as the vector space Vr of

polynomials of degree r in N commuting coordinates. We can extend the vector

space isomorphism V̂r ∼ Vr to an algebra isomorphism Âx̂ ∼ A?x since their vector

spaces coincide. The ?-product in A? is defined so that the algebras Âx̂ and A?x are

isomorphic. By the vector space isomorphism, we map polynomials:

p(x)←→ p̂(x̂) . (2.43)

A pair of polynomials, p̂1(x̂) and p̂2(x̂), are multiplied as

p̂1(x̂) · p̂2(x̂) = p̂1p2(x̂) . (2.44)

By (2.43) we map this polynomial back to a polynomial in A?x:

p̂1p2(x̂)→ (p1 ? p2)(x) . (2.45)

This defines the NC ?-product of two polynomial functions.
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Different deformations correspond to different ?-products. For θ-deformation,

the associated ?-product is the Moyal ?-product given by

(p1 ? p2)(x) = µ
(
e
i
2
hθρσ∂ρ⊗∂σp1 ⊗ p2

)
(x) , (2.46)

with point-wise multiplication map:

µ(f ⊗ g)(x) = f(x) · g(x) . (2.47)

Moyal product can be extended to C∞ functions, remaining bilinear and associative.

The power series in h will not converge in general (for an arbitrary C∞ function)

and we should regard it as a formal power series. In general,

µ?(f ⊗ g) = f ? g = µ
(
e
i
2
hθρσ∂ρ⊗∂σf ⊗ g

)
=
∞∑
n=0

(
ih

2

)n
1

n!
θρ1σ1 ...θρnσn(∂ρ1 ...∂ρnf)(∂σ1 ...∂σng) . (2.48)

Expansion in h yields

f ? g = f · g +O(h) , (2.49)

and

f ? g − g ? f =
ih

2
θρσ (∂ρf∂σg − ∂ρg∂σf) +O(h2) . (2.50)

This equation defines a Poisson structure known as the Moyal bracket:

{f, g}? =
i

2
θρσ (∂ρf∂σg − ∂ρg∂σf) , (2.51)

that consistently reduces to zero when θρσ → 0.

We will present an explicit derivation of the Moyal ?-product that is associa-

ted with the canonical deformation. For that matter, consider the algebra Px of

polynomial functions in N commuting coordinates x1, ..., xN . Any function can be

expanded in the monomial basis

f(x) =
∑
i

Cµ1...µix
µ1 ...xµi = C + Cµx

µ + Cµνx
µxν + ... (2.52)

and is uniquely determined by the expansion coefficients Cµ1...µi that are completely

symmetric in their indices. Now consider the algebra P̂x̂ of polynomial functions

of N noncommmuting coordinates x̂1, ..., x̂N that satisfies PBW condition. PBW
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property enables us to define a basis of ordered monomials. There are many possible

ordering. The most often used ones are the symmetric and normal ordering. If we

choose the symmetric ordering, the basis in the NC algebra is given by

: 1 : = 1 ,

: x̂µ : = x̂µ ,

: x̂µx̂ν : =
1

2
(x̂µx̂ν − x̂ν x̂µ) ,

... . (2.53)

An arbitrary element of P̂x̂ can be expanded in this basis,

f̂(x̂) =
∑
i

Cµ1...µi : x̂µ1...x̂µi := C + Cµ : x̂µ : +Cµν : x̂µx̂ν : +... , (2.54)

and it is fully characterized by the completely symmetric coefficients Cµ1...µi .

We will now apply the procedure analogues to the Weyl quantization. We define

an isomorphism W between vector spaces Px and P̂x̂ by mapping the basis of Px
into the basis of P̂x̂ according to the chosen ordering prescription,

W : f(x) −→ f̂(x̂) . (2.55)

In the case of symmetric ordering,

f̂(x̂) =W [f ] =
1

(2π)N/2

∫
dNk f̃(k)eikµx

µ

, (2.56)

where f̃(k) is the usual Fourier transform of f(x),

f̃(k) =
1

(2π)N/2

∫
dNx f(x)e−ikµx

µ

. (2.57)

For an arbitrary monomial

W [xµ1 ...xµj ] = (i)j
∫

dNk
(
∂kµ1 ...∂kµj δ

(N)(k)
)
eikρx

ρ

= (i)j
∫

dNkδ(N)(k)
(
∂kµ1 ...∂kµj e

ikρxρ
)

= (i)2j(−1)j
1

j!

∑
σ∈Sj

(x̂σ(µ1))...x̂σ(µj))

=: x̂µ1 ...x̂µj : . (2.58)
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In general, the ?-product is defined by

W [f ? g] =W [f ] · W [g] = f̂(x̂) · ĝ(x̂) . (2.59)

For the case of θ-deformation, we have the Moyal ?-product. We start with

W [f ] · W [g] =
1

(2π)N/2

∫
dNk f̃(k)eikρx̂

ρ 1

(2π)N/2

∫
dNp f̃(p)eipσx̂

σ

=
1

(2π)N

∫
dNk

∫
dNp f̃(k)f̃(p)eikρx̂

ρ

eipσx̂
σ

. (2.60)

Since the exponents do not commute, we must again use the BCH formula

exp(A) exp(B) = exp(A+B+
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + ...) , (2.61)

where A and B are two noncommuting operators. In the case of θ-deformation the

BCH formula terminates, terms with more than two commutators vanish,

W [f ] · W [g] =
1

(2π)N

∫
dNk

∫
dNp f̃(k)g̃(p)ei(k+p)ρx̂ρ− i

2
θκρkρpσ

=
1

(2π)N

∫
dNk

∫
dNq f̃(k)g̃(q − k)eiqρx̂

ρ− i
2
θκρkρ(q−k)σ , (2.62)

where we introduced q = k + p. Comparing this expression with

W(f ? g) =
1

(2π)N

∫
dNq(f̃ ? g)(q)eiqρx̂

ρ

, (2.63)

we conclude

(f̃ ? g)(q) =
1

(2π)N/2

∫
dNk f̃(k)g̃(q − k)e−

i
2
θρσkρ(q−k)σ . (2.64)

Finally, we take the inverse Fourier transform and obtain

f ? g =
1

(2π)N

∫
dNp

∫
dNk f̃(k)e−ikσx

σ

e−
i
2
kρθρσpσ g̃(p)e−ipσx

σ

. (2.65)

To evaluate the integral, we expand in powers of θρσ,

f ? g = fg +
i

2
θρσ(∂ρf)(∂σg)− 1

8
θρ1σ1θρ2σ2(∂ρ1∂σ1f)(∂ρ2∂σ2g) + ...

= µ{e
i
2
hθρσ∂ρ⊗∂σf ⊗ g} . (2.66)

with commutative point-wise multiplication µ{f ⊗ g} = f · g ≡ fg.
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2.3 Noncommutative calculus

To completely develop NC field theory, we need to have some tools at our dispo-

sal. First we introduce NC derivative ∂̂ρ as a map of NC algebra Âx̂ to itself. It is

a deformation of the ordinary partial derivative, and we assume that

[∂̂ρ, x̂
µ] = δµρ + fµρ (∂̂, θ) . (2.67)

Here, fµρ (∂̂, θ) is an operator on Âx̂ that does not depend on x̂. Also, NC derivatives

commute,

[∂̂ρ, ∂̂σ] = 0 . (2.68)

Since ∂̂ : Âx̂ → Âx̂ the relation (2.67) must be consistent with the θ-deformation

relation,

∂̂ρ([x̂µ, x̂ν ]− iθµν)− ([x̂µ, x̂ν ]− iθµν)∂̂ρ = 0 , (2.69)

that is, interchanging NC derivative and NC coordinates does not produce a new

commutation relations between coordinates. From this follows that fµρ (∂̂, θ) = 0,

and hence

[∂̂ρ, x̂
µ] = δµρ . (2.70)

This relation is a peculiarity of the constant θ-deformation; it does not hold in

general. We can determine the properties of ∂̂µ from the following diagram:

f̂(x̂)
PBW−−−−→ f(x)

∂̂µ

y
y ∂?µ

(∂̂µf̂)(x̂)
PBW−−−−→ (∂?µf)(x)

(2.71)

The PBW property allows us to map f̂(x̂) and (∂̂µf̂)(x̂) to A?x. Then, by comparing

the images f(x) and (∂?µf)(x), we can deduce the form of ∂?µ. In the case of θ-

deformation, the representation of ∂̂µ on A?x is given by

∂̂µ → ∂?µ = ∂µ , (2.72)

meaning that it does not get deformed. The derivative ∂?µ satisfies the undeformed

Leibniz rule:

(
∂?µ(f ? g)

)
= ∂µ(f ? g) = (∂?µf) ? g + f ? (∂?µg) = (∂µf) ? g + f ? (∂µg) . (2.73)
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To be able to formulate actions, we have to introduce integrals on NC space-time.

One can readily check the cyclicity of ordinary integral over classical space-time

(with suitable boundary conditions),∫
d4x f ? g =

∫
d4x g ? f =

∫
d4x f · g . (2.74)

and this holds in any number of dimensions. From (2.74) follows∫
d4x (f1 ? ... ? fk) =

∫
d4x (fk ? f1 ? ... ? fk−1) , (2.75)

that is, cyclic permutations under integral are allowed. This is important for esta-

blishing variational principle that gives us equations of motion. We can use the

Leibniz rule for the functional variation and cyclicity to eliminate one ?-product

and extract the result. For example,

δ

δg(y)

∫
d4 f ? g ? h =

∫
d4 f ?

(
δ

δg(y)
g

)
? h

=

∫
d4 f ? δ(4)(y − x) ? h

=

∫
d4 δ(4)(y − x) ? (h ? f)

=

∫
d4 δ(4)(y − x)(h ? f) = (h ? f)(y) . (2.76)

Here, δ(4)(y − x) is the ordinary four-dimensional Dirac delta function.
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3 Seiberg-Witten gauge field theory

To begin with, we will briefly summarize the basic elements of classical (un-

deformed) gauge field theories (gauge field theories on classical space-time). Let

hermitian generators TA (A = 1, 2, ..., N) of some non-Abelian, N -parametric gauge

group G, satisfy the following Lie algebra commutation relations

[TA, TB] = if C
AB TC , (3.1)

with totally antisymmetric structure constants f C
AB . Variation of matter field ψ

(we assume that matter fields belong to the fundamental representation of the gauge

group) under infinitesimal gauge transformation is given by

δαψ = iαψ = iαA(x)TAψ , (3.2)

where infinitesimal gauge parameter α(x) = αA(x)TA belongs to the Lie algebra

of the gauge group and depends on space-time coordinates. These transformations

close in the algebra,

[δα, δβ] = δ−i[α,β] . (3.3)

Covariant derivative acts on ψ as

Dµψ = ∂µψ − ivµψ , (3.4)

where vµ(x) = v A
µ (x)TA is a Lie algebra-valued gauge potential. By definition, the

covariant derivative of ψ transforms covariantly,

δαDµψ = iαDµψ , (3.5)

and from this condition follows the inhomogeneous transformation law of the gauge

potential:

δαvµ = ∂µα + i[α, vµ] . (3.6)

Gauge field strength,

Fµν = ∂µvν − ∂νvµ − i[vµ, vν ] , (3.7)

is also Lie algebra-valued, Fµν = F A
µν TA, and it transforms in the adjoint represen-

tation of the gauge group,

δαFµν = i[α, Fµν ] . (3.8)
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We can rewrite the gauge field strength in terms of the covariant derivative in a

curvature-like fashion,

Fµν = i[Dµ, Dν ] . (3.9)

When acting on an adjoint field, such as Fµν , covariant derivative is represented as

DαFµν = ∂αFµν − i[vα, Fµν ] . (3.10)

In the Seiberg-Witten (SW) approach to NC gauge field theories [22, 41, 49, 50]

the basic structure of classical gauge field theories is kept, but instead of ordinary

fields and ordinary commutative multiplication, one introduces NC fields and Moyal

?-product, respectively. We will mainly follow the exposition given in [22]. Variation

of NC matter field ψ̂ (NC fields are denoted by a “hat” symbol) under infinitesimal,

NC-deformed gauge transformation is by definition

δ?Λψ̂ = iΛ̂ ? ψ̂ . (3.11)

where Λ̂ = Λ̂(x) is an NC gauge parameter. Acting on a ?-product of two NC fields,

NC variation satisfies the Leibniz rule:

δ?Λ(φ̂ ? ψ̂) = (δ?Λφ̂) ? ψ̂ + φ̂ ? (δ?Λψ̂) . (3.12)

To establish closure, for a given pair of NC gauge parameters, Λ̂1 and Λ̂2, we would

like to find a third one, Λ̂3, such that

[δ?1
?, δ?2] = δ?3 . (3.13)

There is however a difficulty, in general, concerning the closure axiom for NC gauge

transformations. Namely, if NC gauge parameter Λ̂ is supposed to be Lie algebra-

valued, Λ̂(x) = Λ̂A(x)TA, then, for some NC field ψ̂ from the fundamental represen-

tation (the following argument holds in any representation), we have

[δ?1
?, δ?2]ψ̂ = (Λ̂1 ? Λ̂2 − Λ̂2 ? Λ̂1) ? ψ̂

=
1

2

(
[Λ̂A

1
?, Λ̂B

2 ]{TA, TB}+ {Λ̂A
1
?, Λ̂B

2 }[TA, TB]
)
? ψ̂ = iΛ̂3 ? ψ̂ . (3.14)

We see that the NC closure rule

[δ?
Λ̂1

?, δ?
Λ̂2

] = δ?−i[Λ̂1
?,Λ̂2]

, (3.15)

consistently generalizes its commutative counterpart (3.3). However, (3.14) implies
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that ?-commutator of two NC gauge transformations does not generally close in

the Lie algebra, because anti-commutator {TA, TB} is not, in general, an element

of the algebra, except for U(N) gauge group; only in this particular case one can

study non-expended (in orders of deformation parameter) NC gauge theories, as in

[41]. Such actions look the same as actions describing the corresponding undeformed

theories, except that, instead of the usual point-wise field multiplication, one uses

the Moyal product. Quntization of non-expended theories leads to the phenomena

of UV/IR mixing [51, 52]. But this is not enough if one wants to study the Standard

Model. Therefore, we will employ the enveloping algebra approach [49, 50].

3.1 Universal enveloping algebra approach

The universal enveloping algebra (UEA) is the largest unital associative algebra

in which we can embed a given Lie algebra, so that the abstract bracket operation

of the Lie algebra is now the commutator in the associative algebra.

Definition 3.1. (Universal enveloping algebra). For a given Lie algebra g of di-

mension n, over a field K, with generators g1,..., gn satisfying [gi, gj] = c k
i jgk, one

can define a freely generated tensor algebra T (g) = ⊕∞k=0g
⊗k = K⊕g⊕ (g⊗g)⊕ ... .

The universal enveloping algebra U(g) is obtained by taking a quotient with respect

to the relation a ⊗ b − b ⊗ a = [a, b] foe all a and b in the embedding of g in T (g),

that is, U(g) = T (g)/I, where I is the two-sided ideal generated by the elements of

the form a⊗ b− b⊗ a− [a, b] ∈ g⊕ (g⊗ g) ⊂ T (g); note that [a, b] = c k
i ja

ibjgk.

In general, elements of UEA are linear combinations of (tensor) products of

the generators of the original Lie algebra in all possible orders. Using the defining

relations of UEA, we can always re-arrange those products in a particular manner,

for example, elements of the form (we omit the tensor product) gk11 g
k2
2 ...g

kn
n with

ki ∈ Z+ ∪ {0}, span UEA. Basis of UEA is always infinite dimensional. In our case,

assuming symmetric ordering, a basis (omitting “1”) is provided by

: TA : = TA ,

: TATB : =
1

2
(TATB + TBTA) ,

... ,

: TA1 ...TAn : =
1

n!

∑
σ∈Sn

Tσ(A1)...Tσ(An) , (3.16)

where Sn is the set of permutations of n objects; |Sn| = n!.
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Universal enveloping algebra of a gauge group is ”large enough”to ensure that

closure property for NC gauge transformations holds, provided that NC gauge pa-

rameter Λ̂ is UEA-valued,

Λ̂(x) =
∞∑
n=1

∑
basis

Λ̂n,A1...An : TA1 ...TAn :

= Λ̂1,A : TA : +Λ̂2,AB(x) : TATB : +... . (3.17)

In this case, ?-commutator of two NC gauge transformations closes in the enveloping

algebra. NC covariant derivative in the fundamental representation is defined as

Dµψ̂ = ∂µψ̂ − iV̂µ ? ψ̂ , (3.18)

where V̂µ stands for NC gauge field. NC field strength is defined by analogy with

the classical case

F̂µν = ∂µV̂ν − ∂νV̂µ − i[V̂µ ?, V̂ν ] . (3.19)

The covariant derivative of ψ̂ transforms covariantly,

δ?ΛDµψ̂ = iΛ̂ ? Dµψ̂ , (3.20)

implying the inhomogeneous transformation law for the NC gauge field,

δ?ΛV̂µ = ∂µΛ̂ + i[Λ̂ ?, V̂µ] . (3.21)

From this follows that NC gauge field must also be UEA-valued, and it can be

represented in its basis,

V̂µ =
∞∑
n=1

∑
basis

V̂ nA1...An
µ : TA1 ...TAn :

= V̂ 1,A
µ TA +

1

2!
V̂ 2,AB
µ {TA, TB}

+
1

3!
V̂ 3,ABC
µ (TA{TB, TC}+ TB{TC , TA}+ TC{TA, TB}) + ... . (3.22)

Components V̂ 1,A
µ , V̂ 2,AB

µ , V̂ 3,ABC
µ ,... are new independent fields in the theory, and

since UEA has an infinite basis, it seems that by invoking it we actually introduced

infinite number of new degrees of freedom in the NC theory. This unwanted feature

of UEA-valued gauge field is tamed by the Seiberg-Witten map [41, 53].
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3.2 Seiberg-Witten map

As we saw, the main difficulty with UAE-valued gauge field theory is that it

seems to forces us to introduce infinite number of new un-physical degrees of fre-

edom, making this approach unrealistic. Fortunately however, it is demonstrated

in [54], by studying the cohomology of UEA gauge theory, that all components of

the UEA-valued gauge field can be obtained from the Lie algebra-valued gauge field

V 1
µ = V 1,A

µ TA, and therefore these new components do not represent new degrees of

freedom; NC gauge field theory possess the same number of degrees of freedom as

the corresponding gauge field theory on classical space-time. This structural feature

of UEA gauge theory, and the fact that NC fields have to reduce to their classical

counterparts when θαβ → 0, as dictated by the principle of correspondence, are

behind the concept of the SW map, originally constructed in [41].

This map provides a way to represent NC fields as perturbation series in powers

of the deformation parameter θαβ, with coefficients built out of the fields from the

corresponding classical theory. This means that one can define an NC gauge field

theory in terms of its classical counterpart. The expansion can be defined by deman-

ding that NC gauge transformations are induced by the corresponding commutative

gauge transformations. This, in turn, implies that NC gauge parameter and NC

gauge field have the following structure:

Λ̂ = Λ̂(α, ∂α, ...; vµ, ∂vµ, ...) , (3.23)

V̂µ = V̂µ(vµ, ∂vµ, ...) , (3.24)

where dots stand for higher-order derivatives (we will omit the derivatives to simplify

the notation). Thus we can relate NC gauge transformation δ?Λ ≡ δ?Λα ≡ δ?α with the

commutative gauge transformation δα by

δ?αΛ̂(α, vµ) = Λ̂(α, vµ + δαvµ)− Λ̂(α, vµ) , (3.25)

δ?αV̂µ(α, vµ) = V̂µ(α, vµ + δαvµ)− V̂µ(α, vµ) , (3.26)

with δαvµ = ∂µα + i[α, vµ] being the classical variation of the classical gauge field.

Inserting Λ̂α = Λ̂(x;α, vµ) into (3.14) yields

Λ̂α ? Λ̂β − Λ̂β ? Λ̂α + i(δ?αΛ̂β − δ?βΛ̂α) = δ?−i[α,β] . (3.27)

In order to solve this equation perturbatively, one has to expand Λ̂α in powers of
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the deformation parameter θαβ as

Λ̂α = Λ̂(0)
α + Λ̂(1)

α + Λ̂(2)
α + ... , (3.28)

with Λ̂
(n)
α ∼ θn. At zeroth order, Λ̂α reduce to its undeformed counterparts, Λ̂

(0)
α = α.

Note that this expansion is not the same as the basis expansion (3.17).

The first order NC correction Λ̂
(1)
α ∼ θ satisfies the inhomogeneous equation

δ?αΛ̂
(1)
β − δ

?
βΛ̂(1)

α − i[α,Λ
(1)
β ]− i[Λ̂(1)

α , β]− Λ̂
(1)
−i[α,β] = −1

2
θµν{∂µα, ∂νβ} . (3.29)

Up to the first order, the solution is given by

Λ̂α = α− 1

4
θµν{vµ, ∂να}+O(θ2) . (3.30)

This solution is not unique, since one can add to it solutions of the homogeneous

equation

δ?αΛ̂
(1)
β − δ

?
βΛ̂(1)

α − i[α, Λ̂
(1)
β ]− i[Λ̂(1)

α , β]− Λ̂
(1)
−i[α,β] = 0 . (3.31)

We will not discuss this aspect here. Detailed analyses of non uniqueness of the SW

map can be found in [55].

In this way one can obtain SW expansions for NC gauge parameter, NC gauge

potential, NC gauge field strength and NC matter field; they are given by

Λ̂α = α− 1

4
θαβ{vα, ∂βα}+O(θ2) , (3.32)

V̂µ = vµ −
1

4
θαβ{vα, ∂βvµ + Fβµ}+O(θ2) , (3.33)

F̂µν = Fµν −
1

4
θαβ{vα, (∂β +Dβ)Fµν}+

1

2
θαβ{Fαµ, Fβν}+O(θ2) , (3.34)

ψ̂ = ψ − 1

4
θαβvα(∂β +Dβ)ψ +O(θ2) . (3.35)

It is clear that, at the leading order, all NC fields consistently reduce to their classical

counterparts, in accord with the principle of correspondence. We can use SW map

to expend NC-deformed actions and analyze them perturbatively. There are no new

fields in this expansion, and the leading order action will always be the original

classical action. By the virtue of SW map, expanded actions are endowed with the

original undeformed gauge symmetry of the classical action, order-by-order in θαβ.

This method was used for constructing NC Standard Model, as in [56].
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4 SO(2, 3)? model of NC gravity

In this section, we introduce NC gravity as an SO(2, 3)? gauge theory on ca-

nonically deformed space-time. We will go through some main results obtained in

[57–60], where the theory is founded, without getting into details of the calculation.

The main emphasis will be on the structure of the theory and the method of its

construction. The intention is to set a general framework for dealing with matter

fields and supergravity, later on.

Instating of the SO(2, 3)? model of NC gravity involves several steps. To begin

with, one introduces classical (undeformed) action invariant under SO(2, 3) gauge

transformations. This action consists of three parts: the first one is a Mac-Dowell

Mansouri type of action, quadratic in SO(2, 3) field strength, that may be regarded

as a Yang-Mills action for gravity, and the other two parts are suitable SO(2, 3)

generalizations of the Einstein-Hilbert action and the cosmological constant term.

To relate the AdS gauge theory to gravity (GR), a gauge fixing condition that

reduces the original SO(2, 3) gauge symmetry down to SO(1, 3) needs to be imposed.

For this purpose, a constrained auxiliary field is employed, in the manner of Stelle

and West. After the symmetry breaking, the AdS action consistently reduces to

(Einstein-Hilbert) + (Cosmological constant) + (topological Gauss-Bonet term).

Canonical NC deformation of classical space-time is performed by introducing

the Moyal ?-product that replaces ordinary commutative field multiplication, thus

yielding an NC action invariant under deformed SO(2, 3)? gauge transformations.

At this stage, a direct symmetry braking would not provide the desired result, since

it would not render an SO(1, 3)? invariant action. The way to proceed is to follow

the SW approach to NC gauge field theory and expand the SO(2, 3)? gauge-invariant

NC action in powers of the deformation parameter θµν . By the virtue of SW map,

this expansion is invariant under classical SO(2, 3) gauge transformations, order-

by-order in θµν . After gauge fixing, the obtained NC corrections of all orders will

necessarily possess SO(1, 3) gauge symmetry. The second-order NC correction is

calculated explicitly (the first-order correction vanishes), and the low-energy appro-

ximation of the theory is studied, including the equations of motion. In particular,

it is demonstrated that SO(2, 3)? model implies a non-trivial deformation of Min-

kowski space and reveals that noncommutativity can be regarded as a source of

curvature and torsion. Furthermore, the structure of the NC-deformed Minkowski

metric suggests that the lack of diffeomorphism invariance in the NC theory can

be understood as a consequence of the fact that having constant noncommutativity

implies working in a preferred coordinate system - the Fermi inertial frame.
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4.1 AdS gauge theory of gravity

Before presenting classical AdS gauge-invariant action and its NC deformation,

let us accentuate the main point of the subject - that GR with the cosmological

constant can be consistently formulated as a Yang-Mills theory of AdS gauge group

SO(2, 3). By now, a vast amount of literature concerning the relation of GR to Yang-

Mills gauge theories has been accumulated. Since the original papers of Utiyama [61],

Kibble [62], and Sciama [63], there has been considerable interest in this subject and,

instead of giving a full historical account, we refer to the several available reviews

[64–66]. The main result of these efforts has been to establish a connection between

GR, expressed in the first-order formalism, and the Poincaré gauge theory (PGT),

with the spin-connection representing the gauge field for the local Lorentz rotations,

and the vierbein field being considered as the gauge field for translations in space-

time [67, 68]. However, the analogy with Yang-Mills gauge theories is not complete

because of the specific treatment of translations. Nevertheless, it is possible to

formulate gauge theory of gravity in a way that treats the whole Poincaré group in

a more unified way, and naturally includes the cosmological constant. The approach

is based on the AdS gauge group SO(2, 3). A significant incentive for studying gauge-

theoretic formulations of gravity came with the development of SUGRA (extended

SUGRA theories combine space-time and internal symmetries). Pure SUGRA is

related to a gauge theory of the Poincaré supergroup, or in the generalization of

SUGRA to include cosmological constant, to a gauge theory of the orthosymplectic

OSp(4|1) supergroup. We put our attention on the AdS group SO(2, 3), which is

locally isomorphic to the symplectic group Sp(4) (bosonic sector of OSp(4|1)). For

our purposes, we could equally well use the de Sitter group SO(1, 4); the choice of

SO(3, 2) is made to retain the connection to SUGRA. We will mainly follow the

course set in [69–74].

AdS4 is a maximally symmetric space with Lorentzian signature (+−−−) and

constant negative curvature; it can be represented as a hyperboloid embedded in

a five-dimensional flat ambient space with signature (+ − − − +). In AdS gauge

theory, we start with an action invariant under SO(2, 3) gauge transformations. In

order to relate AdS gauge theory to GR, one has to reduce the original SO(2, 3)

gauge symmetry to SO(1, 3). For this purpose, in [71] Stelle and West introduced a

nondynamical SO(2, 3) five-vector field φA with dimensions of length. The auxiliary

field is constrained to take values in the AdS4 submanifold of the five-dimensional

flat internal space with metric ηAB, a copy of which is associated to each point of

the space-time manifold. The constraint ηABφ
AφB = l2 defines the AdS4 embedding

equation, where l is related to the cosmological constant by Λ = −3/l2.
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Lie group SO(2, 3) is the isometry group of AdS4. AdS algebra so(2, 3) is spanned

by ten generators, MAB = −MBA (A,B = 0, 1, 2, 3, 5) satisfying so(2, 3) commuta-

tion relations

[MAB,MCD] = i(ηADMBC + ηBCMAD − ηACMBD − ηBDMAC) . (4.1)

By splitting the set of generators into six AdS rotation generators Mab (a, b =

0, 1, 2, 3) and four AdS translation generators Ma5, we can recast the AdS algebra

relations (8.1) in a more explicit form:

[Ma5,Mb5] = −iMab ,

[Mab,Mc5] = i(ηbcMa5 − ηacMb5) ,

[Mab,Mcd] = i(ηadMbc + ηbcMad − ηacMbd − ηbdMac) . (4.2)

By introducing rescaled generators Pa := l−1Ma5, (4.2) can be transformed into:

[Pa, Pb] = −il−2Mab ,

[Mab, Pc] = i(ηbcPa − ηacPb) ,

[Mab,Mcd] = i(ηadMbc + ηbcMad − ηacMbd − ηbdMac) . (4.3)

In the limit l → ∞ the AdS algebra reduces to Poincaré algebra, in particular,

we have [Pa, Pb] = 0 with all other commutators left unchanged. This is a famous

example of the Wigner-Inönü contraction. In this sense, AdS4 can be regarded as

a deformation of M4. A realization of AdS algebra is provided by 5D gamma-

matrices ΓA satisfying Clifford algebra {ΓA,ΓB} = 2ηAB; the generators are given

by MAB = i
4
[ΓA,ΓB]. One choice of 5D gamma matrices is ΓA = (iγaγ5, γ5), where

γa are the usual 4D gamma-matrices. In this particular representation, SO(2, 3)

generators are Mab = i
4
[γa, γb] = 1

2
σab and M5a = 1

2
γa. The AdS group SO(2, 3) acts

on matter fields in the tangent space as a gauge group of internal symmetries. AdS

gauge field splits into two components ω ab
µ and ωa5

µ ,

ωµ =
1

2
ω AB
µ MAB =

1

4
ω ab
µ σab −

1

2
ωa5
µ γa , (4.4)

Its variation under infinitesimal gauge transformation is given by

δεωµ = ∂µε+ i[ε, ωµ] , (4.5)

for some so(2, 3) algebra-valued gauge parameter ε = 1
2
εAB(x)MAB.
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More explicitly, in terms of components,

δεω
AB
µ = ∂µε

AB − εACω CB
µ + εBCω

CA
µ ,

δεω
ab
µ = ∂µε

ab − εacω cb
µ + εbcω

ca
µ − εa5ω 5b

µ + εb5ω
5a
µ ,

δεω
a5
µ = ∂µε

a5 − εacω c5
µ + ε5cω

ca
µ . (4.6)

AdS field strength is defined in the usual way,

Fµν = ∂µων − ∂νωµ − i[ωµ, ων ] =
1

2
F AB
µν MAB , (4.7)

and just like the gauge field, its components split into F ab
µν and F a5

µν , yielding

Fµν =
1

4

(
R ab
µν − (ω a5

µ ω b5
ν − ω a5

ν ω b5
µ )
)
σab −

1

2
F a5
µν γa , (4.8)

where

R ab
µν = ∂µω

ab
ν − ∂νω ab

µ + ω a
µ c ω

cb
ν − ω b

µ c ω
ca
ν , (4.9)

F a5
µν = DL

µω
a5
ν −DL

ν ω
a5
µ . (4.10)

Note that DL
µ stands for the Lorentz SO(1, 3) covariant derivative.

Under local AdS transformations, field strength transforms in the adjoint repre-

sentation of SO(2, 3) gauge group

δεFµν = i[ε, Fµν ] , (4.11)

or, more explicitly

δεF
ab
µν = −εacF b

µνc + εbcF a
µνc − εa5F b

µν5 + εb5F a
µν5 ,

δεF
a5

µν = −εacF 5
µνc + ε5cF a

µνc . (4.12)

Equations (4.4), (4.6), (4.8) and (4.12) suggest that after setting εa5 = 0 (by doing

this we restrict the group of gauge transformations to SO(1, 3)) we may identify

ω ab
µ component of the AdS gauge field with the Lorentz SO(1, 3) spin-connection

of PGT, ω a5
µ with the (rescaled) vierbein eaµ/l, field strength component R ab

µν with

the curvature tensor, and F a5
µν with (rescaled) torsion T a

µν /l. It was demonstrated

in the seventies that one could indeed make such identification and relate AdS

gauge theory with GR. One approach was proposed by MacDowell and Mansouri

[69]. They start from an SO(2, 3) gauge invariant theory but make an additional
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assumption - that all fields in the theory transform covariantly under infinitesimal

diffeomorphisms. The action is written in a way which breaks the SO(2, 3) gauge

symmetry down to SO(1, 3), and it is invariant under infinitesimal diffeomorphisms.

One can then identify ω a5
µ with the vierbein and obtain GR after going to the

second-order formalism1. A similar approach was discussed by Towsend in [70].

A more elegant way of relating AdS gauge theory with GR was introduced by

Stelle and West [71]. They also start from an AdS gauge theory, but they spon-

taneously break the SO(2, 3) gauge symmetry down to SO(1, 3). Their start with

an SO(2, 3) gauge-invariant action, and introduce an auxiliary field φ in order to

perform the symmetry breaking. In a particular gauge, their action reduces to the

MacDowell-Mansouri action which is invariant under the SO(1, 3) gauge transfor-

mations, and again ω a5
µ can be interpreted as the vierbeine. In that way, the dif-

feomorphism invariance follows from the spontaneous symmetry breaking and does

not have to be introduced by hand at the very beginning.

The auxiliary field φ = φAΓA is a space-time scalar and internal space 5-vector

transforming in the adjoint representation of SO(2, 3), that is δεφ = i[ε, φ]. It has

dimensions of length, and it is constrained by φ2 = ηABφ
AφB = l2. Using this

auxiliary field one can write the following SO(2, 3) gauge invariant actions [72]:

S1 =
il

64πGN

Tr

∫
d4x εµνρσFµνFρσφ , (4.13)

S2 =
1

128πGN l
Tr

∫
d4x εµνρσFµνDρφDσφφ+ c.c. , (4.14)

S3 = − i

128πGN l
Tr

∫
d4x εµνρσDµφDνφDρφDσφφ , (4.15)

with SO(2, 3) covariant derivative in the adjoin representation,

Dµφ = ∂µφ− i[ωµ, φ] . (4.16)

The complete commutative model of AdS gauge field theory is defined by the sum

of these three actions,

S = c1S1 + c2S2 + c3S3 , (4.17)

where we introduced free parameters c1, c2 and c3 that will be determined from

some additional constraints. The action (4.17) is real and manifestly invariant under

SO(2, 3) gauge group.

1This holds if there are no spinors in the theory. If the spinor fields appear, the torsion is
nonzero, and the pure gravity part of the theory does not reduce to GR.
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In the approach taken in [57–60] (the one that will be advocated in this thesis), there

is no spontaneous symmetry breaking. Instead, gauge symmetry is broken directly

from SO(2, 3) to SO(1, 3) by setting φa = 0 and φ5 = l (physical gauge), which is

consistent with φ2 = l2, yielding

φ|g.f. = lγ5 . (4.18)

The components of Dµφ then reduce to (Dµφ)ag.f. = eaµ and (Dµφ)5
g.f. = 0. This is

how we get the vierbein from the auxiliary field φ.

In the physical gauge, the classical action (4.17) becomes

S|g.f. = c1S1|g.f. + c2S2|g.f. + c3S3|g.f.

= − 1

16πGN

∫
d4x

(
c1l

2

16
εµνρσR mn

µν R rs
ρσ εmnrs

+ e
(

(c1 + c2)R− 6

l2
(c1 + 2c2 + 2c3)

))
. (4.19)

This is the GR action in the first order formalism. The vierbein eaµ and the spin-

connection ω ab
µ are independent fields. Varying the action with respect to the spin-

connection we obtain an equation that allows us to express the spin-connection

in terms of the vierbein. Since there is no fermionic matter in the action this

equation gives vanishing torsion. In that case, the first term in the action (quadratic

in curvature) is the Gauss-Bonnet term. The second term is the Einstein-Hilbert

action, while the last term is the cosmological constant. From the vierbein eaµ we

can construct the metric tensor gµν = ηabe
a
µe
b
ν and e =

√
−g. In order to have

the canonical normalization of the Einstein-Hilbert term, we impose the constraint

c1 + c2 = 1. Gauss-Bonet term is topological; it does not influence the equations of

motion and we can safely omit it. Therefore, the original AdS action reduces to the

Einstein Hilbert action with the cosmological constant

Λ = −3
1 + c2 + 2c3

l2
. (4.20)

Note that the cosmological constant Λ can be positive, negative or zero, regardless

of the AdS symmetry of our model. Under WI contraction it vanishes.

By this, we conclude the first stage of constructing the theory of NC AdS gravity.

Geometrical character of the classical AdS action (4.17) makes it suitable for NC de-

formation by the Seiberg-Witten method. The resulting NC action, invariant under

NC-deformed AdS gauge transformations, is considered in the following section.
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4.2 NC SO(2, 3)? gravity action

NC deformation of GR cannot be obtained in a straightforward manner, the main

difficulty being the underlying diffeomorphism invariance of GR. A vast amount of

literature concerning NC gravity has been accumulated over the years, offering a

variety of different approaches to the subject. In [75–77] an NC deformation of pure

Einstein gravity based on the SW construction is proposed. Then, there is twist

approach including some NC solutions [78–81]. Lorentz symmetry in NC gauge field

theories was studied in [82, 83]. In emergent NC gravity models dynamical quantum

geometry arises from NC gauge theory given by Yang-Mills matrix models [84, 85].

There are also fuzzy space gravity models [86, 87]. The SW map approach was

related to NC gravity models via the Fedosov deformation quantization of endo-

morphism bundles [88, 89]. Other attempts to relate NC gravity models with some

testable GR results like gravitational waves, cosmological solutions and Newtonian

potential, can be found in [90–96]. The connection to SUGRA was made in [97, 98]

and the extension of NC gauge theories to orthogonal and symplectic algebras was

considered in [99, 100].

Having in mind that the SW construction works very well for NC gauge theories

and that we do know how to define a consistent classical AdS gauge theory of

gravity, it seems reasonable to consider NC gravity as an SW gauge field theory

of NC-deformed AdS gauge group SO(2, 3)?. This theory was founded in [57–60].

However, one cannot simply impose a gauge fixing condition on the level of the

non-extended NC action, because this will not yield an SO(1, 3)? invariant theory

[57]. The main point is that NC deformation does not commute with the gauge

fixing. Therefore, one first has to expand the NC action in powers of θµν using the

UEA gauge field theory and the SW map. The expanded NC action is invariant

under classical SO(2, 3) gauge transformations, order-by-order in θµν , by the virtue

of SW map. In this manner, the NC-deformed SO(2, 3)? gauge theory is related to

NC gravity. Of course, one still has to impose the gauge fixing condition to obtain

an SO(1, 3) gauge-invariant NC corrections. The first non-vanishing NC correction

to GR action is of second-order, and it was calculated explicitly [59]. This result

is in accord with [101]. Due to the complexity of the NC gravity action, only the

low-energy sector of the theory is studied. An important prediction of the SO(2, 3)?

model is a non-trivial NC deformation of Minkowski space that leads to a new

interpretation of noncommutativity as a source of curvature and torsion [59], and

of diffeomorphism symmetry breaking in NC field theories [60]. Also, the model

has the capacity to incorporate matter fields, and we will see later that inclusion of

matter couplings produces a non-trivial linear NC deformation.
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The NC generalization of the classical actions (4.13), (4.14) and (4.15) is obtained

by promoting ordinary fields to their NC counterparts and commutative product

between fields by the Moyal ?-product, yielding

S?1 =
ilc1

64πGN

Tr

∫
d4xεµνρσF̂µν ? F̂ρσ ? φ̂ , (4.21)

S?2 =
c2

128πGN l
Tr

∫
d4xεµνρσφ̂ ? F̂µν ? Dρφ̂ ? Dσφ̂+ c.c. , (4.22)

S?3 = − ic3

128πGN l
Tr

∫
d4x εµνρσDµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσφ̂ ? φ̂ . (4.23)

The second action is not real, and therefore we have to add its complex conjugate

by hand to impose the reality condition.

After the SW expansion and the gauge fixing (in that order), the second-order

NC correction S
(2)
NC was found explicitly. It is very long, and we will not write the

expression here. We refer to the original work [59]. The analysis of the exact action is

very demanding, especially the resulting equations of motion, since it contains terms

that are up to fourth power of curvature and up to second power of torsion. However,

one can still analyze the model in different regimes of parameters. If we are interested

in the low energy corrections, we keep terms that have at most two derivatives on

vierbeins. Therefore, we include only terms linear in curvature, and linear and

quadratic in torsion. Additionally, we assume that the spin connection ω ab
µ and

the first-order derivatives of vierbeins such are of the same order. The equations

of motions are obtained by varying the action over vierbein and spin connection,

independently. If we consider only the class of NC solutions with vanishing torsion

T a
µν = 0, in the low energy limit, equations of motion for the vierbein and the

spin-connection are:

δeaµ : R cd
αβ eαae

β
de

µ
c −

1

2
eµaR +

3

l2
(1 + c2 + 2c3)eµa = τ µ

a = −8πGN

e

δS
(2)
NC

δeaµ
, (4.24)

δω ab
µ : T c

ac e
µ
b − T

c
bc e

µ
a − T

µ
ab = S µ

ab = −16πGN

e

δS
(2)
NC

δω ab
µ

. (4.25)

Now we come to an important point. The effective energy-momentum tensor τ µ
a

and the effective spin-tensor S µ
ab in equations (4.24) and (4.25) depend on θµν (since

they are obtained by varying NC correction S
(2)
NC that is quadratic in θµν) and we

may conclude that noncommutativity acts as a source of curvature and torsion, that

is, flat space-time becomes curved as an effect of noncommutative corrections. Also,

a torsion-free solution could develop a non-zero torsion due to noncommutativity.
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4.3 NC Minkowski space

To explore the consequences of space-time noncommutativity in some more de-

tail, we consider the NC deformation of Minkowski space in the low-energy limit

[60]. Minkowski space is a vacuum solution of Einstein field equations without the

cosmological constant. Therefore, if we recall that the cosmological constant de-

pends on the free parameters c1, c2 and c3 as Λ = −3(1 + c2 + 2c3)/l2, we have to

assume the constraint 1 + c2 + 2c3 = 0 that eliminates the cosmological constant in

the classical action. Regarding NC correction as a small perturbation around the

flat Minkowski metric

gµν = ηµν + Λ−4
NChµν , (4.26)

where hµν is quadratic in θµν ∼ Λ2
NC , field equations reduce to

1

2
(∂σ∂

νhσµ + ∂σ∂
µhσν − ∂µ∂νh−�hµν)− 1

2
ηµν(∂α∂βh

αβ −�h) = Λ4
NCτ

µν , (4.27)

with

τµν =
11

4l6

(
2ηαβθ

αµθβν +
1

2
gαγgβδg

µνθαβθγδ
)
.

The NC-deformed components of the metric tensor are given by

g00 = 1− 11

2l6
θ0mθ0nxmxn − 11

8l6
θαβθαβr

2 ,

g0i = − 11

3l6
θ0mθinxmxn ,

gij = −δij − 11

6l6
θimθjnxmxn +

11

24l6
δijθαβθαβr

2 − 11

24l6
θαβθαβx

ixj . (4.28)

The Reimann tensor for this solution can be calculated easily, and the scalar cur-

vature of the NC Minkowski space turns out to be R = 11
l6
θ2 = const. Under

WI contraction it consistently vanishes. Thus, in the SO(2, 3)? model, there exists

a non-trivial NC deformation of Minkowski space. A very interesting (and une-

xpected) conclusion emerges: having the components of the Riemann tensor, the

components of the metric tensor can be represented as

g00 = 1−R0m0nx
mxn ,

g0i = −2

3
R0minx

mxn ,

gij = −δij −
1

3
Rimjnx

mxn . (4.29)

This result suggests that the coordinates xµ that we started with, are actually Fermi

normal coordinates. These are the inertial coordinates of a local observer moving
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along a geodesic. The time coordinate x0 is just the proper time of the observer,

and space coordinates xi are defined as affine parameters along the geodesics in the

hypersurface orthogonal to the actual geodesic of the observer. Unlike Riemann

normal coordinates which can be constructed in a small neighbourhood of a point,

Fermi normal coordinates can be constructed in a small neighbourhood of a geode-

sic, that is, inside a small cylinder surrounding the geodesic [102–104]. Along the

geodesic we have

gµν |geod. = ηµν , ∂ρgµν |geod. = 0 . (4.30)

The measurements performed by a local observer moving along a geodesic are descri-

bed from a Fermi frame of reference, and this observer is the one that measures θµν

to be constant. In any other reference frame (any other coordinate system) θµν will

not be constant. The breaking of diffeomorphism symmetry due to canonical non-

commutativity can now be understood as a consequence of working in a preferred

frame of reference given by the Fermi normal coordinates.

In an arbitrary reference frame, the NC deformation is obtained by an appro-

priate coordinate transformation. Let yα be an arbitrary coordinate system at a

point P in a small neighborhood of the geodesic γ which defines our Fermi normal

coordinates xµ and [xµ ?, xν ] = iθµν . The noncommutativity in y-coordinates is then

given by

[yα ?, yβ] = iθµν
∂yα

∂xµ
∂yβ

∂xν
− i

24
θµνθρσθκλ

∂3yα

∂xκ∂xρ∂xµ
∂3yβ

∂xλ∂xσ∂xν
+ . . . . (4.31)

The ?-product is the Moyal ?-product and yα are understood as functions of Fermi

inertial coordinates xµ.

Two NC gravity models with constant noncommutativity, one in xµ coordinates,

and the other in yµ coordinates will not be equivalent. The result of [60] suggests

that constant noncommutativity implies a preferred coordinate system. This choice

breaks the diffeomorphism invariance of the NC theory. It is not clear whether the

diffeomorphism invariance can be restored. To answer this question, we have to be

able to rewrite the model in an arbitrary coordinate system. A step towards the

resolution of this problem would be understanding better various solutions of the

SO(2, 3) NC gravity model, such as the NC Schwarzschild solution and cosmological

solutions. This remains to be done in the future.
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5 Dirac field and NC gravity

Dirac spinor field describes charged spin-1/2 fermions, such as an electron, or a

quark. It transforms (although not necessarily) in the fundamental representation

of a gauge group, and it is invariant under general coordinate transformations. To

work with spinors in curved space-time, one has to use the first-order formalism.

In this section we introduce Dirac field within the framework of AdS gauge theory

of gravity, on the classical and noncommutative level. We start by presenting a

classical (undeformed) action, invariant under SO(2, 3) gauge transformations, that

coincides, after choosing a certain gauge, with the standard Dirac action in curved

space-time with a universal mass-like term that vanishes under WI contraction. This

mass-like term suggests (wrongly) that fermions have a mass equal to 2/l (l is the WI

contraction parameter related to AdS radius). However, the correct interpretation

would be that theory describes a massless electron in AdS4 background geometry.

Due to its geometric character (before gauge fixing), the classical SO(2, 3) gauge-

invariant action is straightforwardly deformed by introducing Moyal ?-product. The

resulting NC action is invariant under NC-deformed group of SO(2, 3)? gauge trans-

formations. We take the SW approach to NC gauge field theory and expand the NC

action in powers of the deformation parameter θµν . By construction, the expanded

NC action is invariant under ordinary SO(2, 3) gauge transformations, order-by-

order in θµν . A significant consequence of having matter fields coupled to NC gravity

is the non-vanishing first order NC correction (for pure NC gravity it is quadratic).

This fact greatly simplifies the calculation and leads to some new phenomenological

predictions. In particular, the linear NC correction pertains even in the flat space-

time limit and produces NC deformation of the Dirac equation, Feynman propagator

and dispersion relation of an electron. We arrive at an interesting conclusion concer-

ning the relation between electron’s energy and helicity, namely, the model predicts

NC birefringence effect (analogues to the well-know effect in optics) for free elec-

trons propagating in NC space-time. Therefore, NC-deformed space-time acts as a

birefringent medium for electrons and causes a Zeeman-like splitting of their energy

levels, even in the absence of an external magnetic field. Later on, we will see that

if homogeneous background magnetic field is present, space-time noncommutativity

modifies electron’s Landau levels. We also note that some NC terms survive the WI

contraction, and thus provide a possible way to explore the connection between the

WI contraction and canonical NC deformation.

The content of this section is originally presented in [105].
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5.1 Dirac field in AdS framework

Let ψ be a Dirac spinor field transforming in the fundamental representation of

SO(2, 3) gauge group. Its infinitesimal variation under the group action is

δεψ = iεψ =
i

2
εABMABψ , (5.1)

where εAB are some antisymmetric gauge parameters of SO(2, 3). Therefore, we

define the SO(2, 3) covariant derivative of a Dirac spinor as

Dµψ = ∂µψ −
i

2
ω AB
µ MABψ , (5.2)

and it can be dissolved in two parts

Dµψ = DL
µψ +

i

2l
eaµγaψ , (5.3)

where DL
µ , given by

DL
µψ = ∂µψ −

i

4
ω ab
µ σabψ , (5.4)

is the Lorentz SO(1, 3) covariant derivative. The vierbein term in (5.3) is AdS

deformation that vanishes under WI contraction. As in the case of pure NC gravity

(Section 4), we introduce a non-dynamical auxiliary field φ = φAΓA that transforms

in the adjoint representation AdS group, that is δεφ = i[ε, φ] .

Consider the spinor action (since it involves derivatives, we will call it “kinetic”)

Sψ,kin =
i

12

∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσψ −Dσψ̄DµφDνφDρφψ

]
. (5.5)

This action is manifestly invariant under SO(2, 3) gauge transformations, and it is

hermitian up to the surface term that vanishes. To reduce SO(2, 3) gauge symme-

try down to SO(1, 3) we choose the physical gauge and set φa = 0 and φ5 = l.

Consequently, we must set Dµφ
a|g.f. = eaµ and Dµφ

a|g.f. = 0, yielding

Sψ,kin|g.f. =
i

2

∫
d4x e

[
ψ̄γσDL

σψ −DL
σ ψ̄γ

σψ
]
− 2

l

∫
d4x e ψ̄ψ . (5.6)

This is exactly the Dirac action in curved space-time for spinors of mass 2/l. Now,

spinors do not actually gain mass by gauge fixing. The correct interpretation is that

cosmological mass-like term arises due to AdS background geometry. WI contraction

eliminates this term.
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There are five additional fermionic terms, invariant under SO(2, 3) gauge trans-

formations, that can be used to supplement the original action and modify the

cosmological mass-like term. They differ only in the position of the auxiliary field:

ψ̄DµφDνφDρφDσφφψ , ψ̄DµφDνφDρφφDσφψ ,

ψ̄DµφDνφφDρφDσφψ , ψ̄DµφDνφDρφDσφφψ ,

ψ̄DµφφDνφDρφDσφψ . (5.7)

Using them, we can build only three independent hermitian mass-like actions (of

the type ψ̄...ψ) denoted by Sm,i (i = 1, 2, 3):

Sm,1 =
ic1

2

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσφφψ + ψ̄φDµφDνφDρφDσφψ

]
,

Sm,2 =
ic2

2

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφφDσφψ + ψ̄DµφφDνφDρφDσφψ

]
,

Sm,3 = ic3

(m
l
− 2

l2

)∫
d4x εµνρσ ψ̄DµφDνφφDρφDσφψ . (5.8)

Free dimensionless parameters c1, c2 and c3 are introduced for generality. After

gauge fixing, sum of the three terms in (5.8), denoted by Sψ,m, reduces to

Sψ,m|g.f. =
3∑
i=1

Sm,i = 24(c2 − c1 − c3)

(
m− 2

l

)∫
d4x e ψ̄ψ . (5.9)

If we want to assume some particular value m for the mass parameter, the coefficients

c1, c2, and c3 must satisfy the constraint

c2 − c1 − c3 = − 1

24
. (5.10)

Then (5.9) becomes

Sψ,m|g.f. = −
(
m− 2

l

)∫
d4x e ψ̄ψ . (5.11)

Terms in (5.6) and (5.11) that involve cosmological mass 2/l cancel each other out,

and therefore, the total spinor action Sψ = Sψ,kin + Sψ,m comes down to

Sψ|g.f. =
i

2

∫
d4x e

[
ψ̄γσDL

σψ −DL
σ ψ̄γ

σψ
]
−m

∫
d4x e ψ̄ψ . (5.12)

Thus, by imposing the gauge fixing condition, we reduced the original AdS gauge

theory involving Dirac spinors, to the standard Dirac action in curved space-time.
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5.2 NC Dirac action

To deform classical actions (5.5) and (5.8), we implement the Seiberg-Witten

method of constructing NC gauge field theories out of the corresponding undefor-

med ones, presented in Section 3. First, we promote classical fields, ψ and φ, to their

NC counterparts, ψ̂ and φ̂, and introduce the Moyal ?-product (1.5) instead of com-

mutative field multiplication. The resulting NC action is subsequently expanded in

powers of θµν using the SW prescription. By construction, this expanded NC action

is invariant under undeformed SO(2, 3) gauge transformations, order-by-order. In

the case of pure NC gravity (without matter field), the lowest non-vanishing NC

correction, in the physical gauge, is of second order in θµν . This feature renders

the theory computationally challenging. It is, therefore, a quite significant fact that

having matter fields (Dirac spinors, in particular) coupled to NC gravity produces

a non-vanishing linear NC correction in the physical gauge. We will present the

calculation procedure for the linear NC correction to the kinetic term (5.5) and the

three bilinear terms (5.8), separately.

NC coupling of spinors and gravity was previously treated by P. Aschieri and L.

Castellani [106–108]. They choose to start with the classical action in curved space-

time, thus having SO(1, 3) gauge symmetry from the beginning. NC deformation

immediately produces SO(1, 3)? gauge-invariant action. In the case of massless

Majorana spinors [106, 107], the first non-vanishing NC correction turns out to be

quadratic in θµν (all odd-power corrections being equal to zero). Coupling of Dirac

spinors and NC gravity is treated in [108] and the linear NC deformation is obtained,

but the physical implications of this result have not been elaborated. The fact that

AdS algebra reduces to Poincaré algebra under WI contraction, might be reflected

on the relation of our NC AdS gauge theory with the NC theory of Aschieri and

Castellani, based on deformed Lorentz group. For that matter, we point out that

our theory implies that some parts of the linear NC correction to the Dirac action in

curved space-time survive WI contraction and some residual NC effects are present

even in flat space-time. This feature enables us to investigate potentially observable

NC effects at the lowest possible order. It leads to an important physical prediction

of the linearly deformed dispersion relation for electrons in NC Minkowski space,

along with a Zeeman-like splitting of their undeformed energy levels. Also, the

energy levels become helicity-dependent due to noncommutativity of the background

space-time that behaves as a birefringent medium for the propagating electrons.

Incidentally, that differences between the two models revealed themselves already in

the case of pure NC gravity. Namely, as we saw in Section 4, the NC deformation

of Minkowski space is obtained in the SO(2, 3)? model of NC gravity.
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5.3 NC deformation of the kinetic spinor term

To deform the spinor action (5.5), we follow the general SW prescription elabo-

rated in Section 3. As in general SW NC gauge field theory, we introduce NC spinor

field ψ̂ (from the fundamental representation), NC auxiliary field φ̂ (from the adjoint

representation) and SO(2, 3)? gauge field ω̂µ. NC covariant derivative is defined as

Dµψ̂ = ∂µψ̂ − iω̂µ ? ψ̂ , (5.13)

Dµφ̂ = ∂µφ̂− i[ω̂µ ?, φ̂] . (5.14)

The structure of NC covariant derivative, in both representations, is the same as

in classical gauge field theory, the only difference being the use of the Moyal ?-

product instead of ordinary point-wise multiplication. Under infinitesimal NC gauge

transformations, ψ̂, φ̂ and their covariant derivatives transform as

δ?ε ψ̂ = iΛ̂ε ? ψ̂ , δ?εDµψ̂ = iΛ̂ε ? Dµψ̂ ,

δ?ε φ̂ = i[Λ̂ε
?, φ̂] , δ?εDµφ̂ = i[Λ̂ε

?, Dµφ̂] . (5.15)

In these NC variation, Λ̂ε is an SO(2, 3)? gauge parameter that reduces to the

corresponding classical SO(2, 3) gauge parameter ε = 1
2
εABMAB when θαβ → 0,

that is, Λ̂ε = ε+O(θ). Likewise, we have ω̂µ = ωµ +O(θ) and F̂µν = Fµν +O(θ).

The SW expansion of ψ̂, φ̂ and their covariant derivatives, are given by

ψ̂ = ψ − 1
4
θαβωα(∂β +Dβ)ψ +O(θ2) , (5.16)

φ̂ = φ− 1
4
θαβ{ωα, (∂β +Dβ)φ}+O(θ2) , (5.17)

Dµψ̂ = Dµψ − 1
4
θαβωα(∂β +Dβ)Dµψ +

1

2
θαβFαµDβψ +O(θ2) , (5.18)

Dµφ̂ = Dµφ− 1
4
θαβ{ωα, (∂β +Dβ)Dµφ}+ 1

2
θαβ{Fαµ, Dβφ}+O(θ2) . (5.19)

Consider the NC version of the kinetic spinor action (5.5):

S?kin =
i

12

∫
d4x εµνρσ

[
ˆ̄ψ ? (Dµφ̂) ? (Dνφ̂) ? (Dρφ̂) ? (Dσψ̂)

−(Dσ
ˆ̄ψ) ? (Dµφ̂) ? (Dνφ̂) ? (Dρφ̂) ? ψ̂

]
. (5.20)

It is obtained by a direct substitution of the ordinary commutative product with the

Moyal ?-product. Using the NC variations (5.15) and cyclicity of the ?-product one

can readily check that (5.20) is invariant under deformed SO(2, 3)? gauge transfor-

mations. Moreover, this action is real, up to the surface term that vanishes.
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Now we expand this action up to first order in the deformation parameter θαβ,

using the SW map. Generally, for any pair of NC fields Â and B̂, the first order NC

correction to their ?-product is given by(
Â ? B̂

)(1)

= Â(1)B + AB̂(1) +
i

2
θαβ∂αA∂βB . (5.21)

If both of these two fields transform in the adjoint representation, the last formula

assumes a more specific form(
Â ? B̂

)(1)

=− 1

4
θαβ{ωα, (∂β +Dβ)AB}+

i

2
θαβDαADβB

+ cov(Â(1))B + Acov(B̂(1)) , (5.22)

where cov(Â(1)) is the covariant part of A′s first order NC correction, and cov(B̂(1)),

the covariant part of B′s first order NC correction. Applying the rule (5.22) twice,

and using the expansion (5.19) for the covariant derivative of the adjoint field φ̂, we

can obtain the first order NC correction to the product Dµφ̂ ? Dνφ̂ ? Dρφ̂ :

(
Dµφ̂ ? Dνφ̂ ? Dρφ̂

)(1)

= θαβ
[
− 1

4
{ωα, (∂β +Dβ)(DµφDνφDρφ)}

+
i

2
Dα(DµφDνφ)(DβDρφ)

+
i

2
(DαDµφ)(DβDνφ)Dρφ

+
1

2
{Fαµ, Dβφ}DνφDρφ

+
1

2
Dµφ{Fαν , Dβφ}Dρφ

+
1

2
DµφDνφ{Fαρ, Dβφ}

]
. (5.23)

The composite field Dµφ̂ ? Dνφ̂ ? Dρφ̂ also transforms in the adjoint representation

of SO(2, 3)?, being a product of fields that transform in the adjoint representation.

Therefore, according to the rule (5.22), we could immediately say, without explicit

calculation, what is the non-covariant part of the first order NC correction to Dµφ̂ ?

Dνφ̂ ? Dρφ̂, that is, the first term in (5.23). It is non-covariant because of the

manner in which it involves the gauge potential ωα and the partial derivative ∂β.

The other terms appearing in (5.23) are manifestly covariant. The use of the rule

(5.22) significantly simplifies the calculation. The non-covariant part of any NC field

Â that transforms in the adjoint representation has the same form, namely,

non-cov
(
Â(1)

)
= −1

4
θαβ{ωα, (∂β +Dβ)A} . (5.24)
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If we have an NC field Â that transforms in the adjoint representation, and an NC

field B̂ that transforms in the fundamental representation, the rule (5.21) again

acquires a specific form,(
Â ? B̂

)(1)

=− 1

4
θαβωα(∂β +Dβ)(AB) +

i

2
θαβDαADβB

+ cov(Â(1))B + Acov(B̂(1)) . (5.25)

Similar relation can be found in [101]. The non-covariant part of any composite

field that transforms in the fundamental representation has the same form as the

second term in (5.16). This formula reviles the structure of NC corrections and

greatly simplifies the calculation. Using the result (5.23) and the expansion (5.18)

for the covariant derivative of a spinor field, can obtain first order NC correction to

the noncommutative product Dµφ̂ ?Dνφ̂ ?Dρφ̂ ?Dρψ̂. Applying the rule (5.25), and

setting Â := Dµφ̂ ? Dνφ̂ ? Dρφ̂ and B̂ := Dσψ̂, yield

(Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσψ̂)(1) = θαβ
[
− 1

4
ωα(∂β +Dβ)(DµφDνφDρφDσψ)

+
i

2
Dα(DµφDνφDρφ)(DβDσψ)

+
i

2
Dα(DµφDνφ)(DβDρφ)Dσψ

+
i

2
(DαDµφ)(DβDνφ)DρφDσψ

+
1

2
{Fαµ, Dβφ}DνφDρφDσψ

+
1

2
Dµφ{Fαν , Dβφ}DρφDσψ

+
1

2
DµφDνφ{Fαρ, Dβφ}Dσψ

− 1

2
DµφDνφDρφFσαDβψ

]
. (5.26)

The composite field Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσψ̂ transforms in the fundamental repre-

sentation since it is a product of the field Dµφ̂ ? Dνφ̂ ? Dρφ̂ that transforms in the

adjoint representation, and the field Dσψ̂ that transforms in the fundamental repre-

sentation of SO(2, 3)?, and therefore, the first term in (5.26), the non-covariant one,

has the same form as the corresponding non-covariant term in (5.16). Again, we

could anticipate that from the general result (5.25). The remaining terms in (5.26)

are manifestly covariant. Using the NC expansion of the Dirac adjoint field,

ˆ̄ψ = ψ̄ − 1

4
θαβψ̄(

←−
∂ β +

←−
Dβ)ωα +O(θ2) , (5.27)
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setting Â := ˆ̄ψ and B̂ := Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσψ̂, the general rule (5.21) gives us

the first order NC correction to the SO(2, 3)? scalar ˆ̄ψ ? Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσψ̂:

( ˆ̄ψ ? Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσψ̂)(1) = θαβ
[
− 1

4
ψ̄FαβDµφDνφDρφDσψ

+
i

2
ψ̄Dα(DµφDνφDρφ)(DβDσψ)

+
i

2
ψ̄Dα(DµφDνφ)(DβDρφ)Dσψ

+
i

2
ψ̄(DαDµφ)(DβDνφ)DρφDσψ

+
1

2
ψ̄{Fαµ, Dβφ}DνφDρφDσψ

+
1

2
ψ̄Dµφ{Fαν , Dβφ}DρφDσψ

+
1

2
ψ̄DµφDνφ{Fαρ, Dβφ}Dσψ

− 1

2
ψ̄DµφDνφDρφFσαDβψ

]
. (5.28)

Finally, we can present the complete linear NC correction to the classical kinetic

spinor action (5.5), that is, the n = 1 term in the perturbative expansion of the full

NC kinetic spinor action S?ψ,kin =
∞∑
n=0

S
(n)
ψ,kin, before gauge fixing:

S
(1)
ψ,kin =

i

12
θαβ
∫

d4x εµνρσ

[
− 1

4
ψ̄FαβDµφDνφDρφDσψ

+
i

2
ψ̄Dα(DµφDνφ)(DβDρφ)Dσψ

+
i

2
ψ̄Dα(DµφDνφDρφ)(DβDσψ)

+
i

2
ψ̄(DαDµφ)(DβDνφ)DρφDσψ

+
1

2
ψ̄{Fαµ, Dβφ}DνφDρφDσψ

+
1

2
ψ̄Dµφ{Fαν , Dβφ}DρφDσψ

+
1

2
ψ̄DµφDνφ{Fαρ, Dβφ}Dσψ

− 1

2
ψ̄DµφDνφDρφFσαDβψ

]
+ c.c. (5.29)

By the virtue of SW map, all terms in the expansion of the NC action (5.29), which

is invariant under NC-deformed SO(2, 3)? gauge transformations, are manifestly

invariant under ordinary SO(2, 3) gauge transformation.
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In order to break the SO(2, 3) gauge symmetry of the action (5.29) down to the

local Lorentz SO(1, 3) symmetry, we choose the physical gauge and set φa = 0 and

φ5 = l (the result for each term separately is given in Appendix A), yielding

S
(1)
ψ,kin|g.f. = θαβ

∫
d4x e

[
− 1

8
R ab
αµ eµa(ψ̄γbD

L
βψ)− 1

16
R ab
αβ eσa(ψ̄γbD

L
σψ)

− i

32
R ab
αβ ε d

abc e
σ
d(ψ̄γcγ5DL

σψ)− i

24
R ab
αµ ε d

abc e
c
β(eµde

σ
s − eµs eσd)(ψ̄γsγ5DL

σψ)

− i

16
R bc
αµ eµaε

a
bcm(ψ̄γmγ5DL

βψ)− i

8l
T a
αβ e

σ
a(ψ̄DL

σψ) +
i

8l
T a
αµ e

µ
a(ψ̄DL

βψ)

+
1

16l
T a
αβ e

µ
a(ψ̄σ σ

µ D
L
σψ) +

1

8l
T a
αµ e

µ
b (ψ̄σ b

a D
L
βψ)− 1

12l
T a
αµ ε

cd
ab ebβe

µ
c e
σ
d(ψ̄γ5DL

σψ)

− 1

4
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )(ψ̄γbDL

βD
L
σψ)− 1

4l
(ψ̄σ σ

α D
L
βD

L
σψ)− i

2l
(DL

αe
a
µ)eµa(ψ̄DL

βψ)

+
7i

48l2
ε d
abc e

a
αe

b
βe

σ
d(ψ̄γcγ5DL

σψ)− i

8
ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

cdrseµc e
ν
de
σ
s (ψ̄γrγ5D

L
σψ)

+
i

12
(DL

αe
a
µ)(DL

β e
b
ν)ε

cds
b eµc e

ν
de
σ
s (ψ̄γaγ5D

L
σψ)− 1

12l
ecα(DL

β e
b
ν)ε

ds
bc eνde

σ
s (ψ̄γ5D

L
σψ)

− 1

8l
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )ecβ(ψ̄σbcD

L
σψ)− 1

8l
(DL

αe
a
µ)eµb (ψ̄σ b

a D
L
βψ)

+
1

96l
R ab
αβ (ψ̄σabψ)− 5

48l
R ab
αµ eµae

c
β(ψ̄σbcψ)− 1

16l
R ab
αµ eβae

µ
c (ψ̄σ c

b ψ)

− 3

32l2
T a
αβ (ψ̄γaψ)− 1

16l2
T a
αµ e

µ
a(ψ̄γβψ) +

1

16l2
T a
αµ eβa(ψ̄γ

µψ)

+
1

12l
ηab(D

L
αe

a
µ)(DL

β e
b
ν)(ψ̄σ

µνψ)− 1

6l
(DL

αe
a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)(ψ̄σcbψ)

− 3

16l2
(DL

αe
a
µ)eµa(ψ̄γβψ) +

1

16l2
(DL

αe
a
µ)eβa(ψ̄γ

µψ)− 1

3l3
(ψ̄σαβψ)

]
+ c.c. (5.30)

After WI contraction (l →∞) many terms in (5.30) vanish, for example, all terms

of the type (ψ̄...ψ), and we are left with a severely reduced action,

S
(1)
ψ,kin|g.f.

WI
= θαβ

∫
d4x e

[
− 1

8
R ab
αµ eµa(ψ̄γbD

L
βψ)− 1

16
R ab
αβ eσa(ψ̄γbD

L
σψ)

− i

32
R ab
αβ ε d

abc e
σ
d(ψ̄γcγ5D

L
σψ)− i

16
R bc
αµ eµaε

a
bcm(ψ̄γmγ5D

L
βψ)

− i

24
R ab
αµ ε d

abc e
c
β(eµde

σ
s − eµs eσd)(ψ̄γsγ5D

L
σψ)

− 1

4
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )(ψ̄γbDL

βD
L
σψ)

− i

8
ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

cdrseµc e
ν
de
σ
s (ψ̄γrγ5D

L
σψ)

+
i

12
(DL

αe
a
µ)(DL

β e
b
ν)ε

cds
b eµc e

ν
de
σ
s (ψ̄γaγ5D

L
σψ)

]
+ c.c. (5.31)
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5.4 NC deformation of the mass-like spinor terms

We now have to deal with the bilinear mass-like spinor actions (5.8). Their NC

deformation proceeds in the same manner as for the kinetic spinor term, and after

some tedious calculation that involves sequential application of the rules (5.22) and

(5.25), we obtain the following results.

NC-deformed mass-like spinor action before gauge fixing is

S?ψ,m =
i

2l

(
m− 2

l

)∫
d4x εµνρσ

[
c1

ˆ̄ψ ? Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσφ̂ ? φ̂ ? ψ̂

+c2
ˆ̄ψ ? Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? φ̂ ? Dσφ̂ ? ψ̂ (5.32)

+c3
ˆ̄ψ ? Dµφ̂ ? Dνφ̂ ? φ̂ ? Dρφ̂ ? Dσφ̂ ? ψ̂

]
+ c.c.

Again, by using the SW map, we can represent this action as an expansion in powers

of the deformation parameter θαβ, taking only linear NC correction into account.

Below, we present the result of this operation for each of the three mass-like terms,

separately. We denote them by S
(1)
m,i (i = 1, 2, 3).

The first mass-like term:

S
(1)
m,1 =

ic1

2l

(
m− 2

l

)
θαβ

∫
d4x εµνρσψ̄

[
+
i

2
Dα(DµφDνφDρφDσφφ)Dβ

− 1

4
FαβDµφDνφDρφDσφφ

+
i

2
Dα(DµφDνφDρφDσφ)Dβφ

+
i

2
Dα(DµφDνφ)Dβ(DρφDσφ)φψ

+
i

2
DµφDνφ(DαDρφ)(DβDσφ)φ

+
i

2
(DαDµφ)(DβDνφ)DρφDσφφψ

+
1

2
{Fαµ, Dβφ}DνφDρφDσφφ

+
1

2
Dµφ{Fαν , Dβφ}DρφDσφφψ

+
1

2
DµφDνφ{Fαρ, Dβφ}Dσφφ (5.33)

+
1

2
DµφDνφDρφ{Fασ, Dβφ}φ

]
ψ .

50



The second mass-like term:

S
(1)
m,2 =

ic2

2l

(
m− 2

l

)
θαβ

∫
d4x εµνρσψ̄

[
+
i

2
Dα(DµφDνφDρφφDσφ)Dβ

− 1

4
FαβDµφDνφDρφφDσφ

+
i

2
Dα(DµφDνφDρφφ)(DβDσφ)

+
i

2
Dα(DµφDνφDρφ)DβφDσφ

+
i

2
Dα(DµφDνφ)(DβDρφ)φDσφ

+
i

2
(DαDµφ)(DβDνφ)DρφφDσφ

+
1

2
{Fαµ, Dβφ}DνφDρφφDσφ

+
1

2
Dµφ{Fαν , Dβφ}DρφφDσφ

+
1

2
DµφDνφ{Fαρ, Dβφ}φDσφ (5.34)

+
1

2
DµφDνφDρφφ{Fασ, Dβφ}

]
ψ .

The third mass-like term:

S
(1)
m,3 =

ic3

2l

(
m− 2

l

)
θαβ

∫
d4x εµνρσψ̄

[
+
i

2
Dα(DµφDνφφDρφDσφ)Dβ

− 1

4
FαβDµφDνφφDρφDσφ

+
i

2
Dα(DµφDνφφ)Dβ(DρφDσφ)

+
i

2
Dα(DµφDνφ)DβφDρφDσφ

+
i

2
(DαDµφ)(DβDνφ)φDρφDσφ

+
i

2
DµφDνφφ(DαDρφ)(DβDσφ)

+
1

2
{Fαµ, Dβφ}DνφφDρφDσφ

+
1

2
Dµφ{Fαν , Dβφ}φDρφDσφ

+
1

2
DµφDνφφ{Fαρ, Dβφ}Dσφ (5.35)

+
1

2
DµφDνφφDρφ{Fασ, Dβφ}

]
ψ .
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Assuming that none of the three mass-like spinor terms in (5.32) is more preferable

than the other, and taking into account the classical constraint (5.10), we choose to

set c1 = −c2 = c3 = 1
72

.

After imposing the gauge fixing condition, and defining a(m, l) := m − 2/l, the

complete first order NC correction to the sum of the three classical mass-like terms

(5.8) becomes

S
(1)
ψ,m|g.f. = a(m, l) θαβ

∫
d4x e ψ̄

[
− i

4
(DL

αe
a
µ)eµaD

~

~

L
β +

1

12
ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 1

3
(DL

αe
a
µ)(DL

β e
b
ν)e

µ
ae
ν
cσ

c
b −

1

18l
(DL

αe
a
µ)eµaγβ −

1

6
R ab
αµ eµae

c
βσbc

− 1

48
R ab
αβ σab −

1

36l
T a
αβ γa −

7

36l
T a
αµ e

µ
aγβ −

1

4l2
σαβ

]
ψ . (5.36)

In Appendix A we present the result for each mass-like term separately.

After WI contraction we are left with

S
(1)
ψ,m|g.f.

WI
= θαβ

∫
d4x e ψ̄

[
− im

4
(DL

αe
a
µ)eµaD

~

~

L
β +

m

12
ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− m

3
(DL

αe
a
µ)(DL

β e
b
ν)e

µ
ae
ν
cσ

c
b −

m

48
R ab
αβ σab −

m

6
R ab
αµ eµae

c
βσbc

]
ψ . (5.37)

The total first order NC correction in the physical gauge is the sum of the kinetic

spinor term (5.30) and the mass-like spinor term (5.36),

S
(1)
ψ |g.f. = S

(1)
ψ,kin|g.f. + S

(1)
ψ,m|g.f. . (5.38)

The result (5.38) represents the first order NC correction to the classical Dirac action

in curved space-time. The action exhibits couplings of Dirac spinors and gravity

that arise due to space-time noncommutativity. The fact that some terms, those in

(5.31) and (5.37), survive WI contraction is of special significance. Namely, it is not

entirely clear whether WI contraction, in general, commutes with the canonical NC

deformation. In this particular case, one would have to calculate directly the NC

correction to the Dirac action in curved space-time (by deforming SO(1, 3) gauge

symmetry) and compare the result with (5.38).

Also, having a non-trivial linear NC correction enables us to explore potentially

observable NC effects at the lowest perturbative order. We will see in the next

section that the first order NC correction pertains even in Minkowski space.

52



5.5 NC Dirac equation in Minkowski space

Up until now, we have not talked about the metric of space-time explicitly. We

know from Section 4 that the SO(2, 3)? model of NC gravity predicts quadratic

deformation of the Minkowski metric. Therefore, it is justified to consider the flat

space-time limit of the NC spinor-gravity action (5.38). After setting gµν = ηµν +

O(θ2), the NC action (5.38) becomes

S
(1)
ψ,flat = θαβ

∫
d4x

[
− 1

2l
(ψ̄σ σ

α ∂β∂σψ) +
7i

24l2
ε ρσ
αβ (ψ̄γργ5∂σψ)−M3(ψ̄σαβψ)

]
,

(5.39)

where we introduced M3 := m
4l2

+ 1
6l3

. This action is the linear NC correction to

the Dirac action in Minkowski space. Note that it vanishes under WI contraction.

Noncommutativity appears in the form of new terms in the action. One of them is

the mass-like term with the mass matrix M3θαβσαβ. The total NC-deformed action

in Minkowski space up to first order in θαβ is

S?ψ,flat = S
(0)
ψ,flat + S

(1)
ψ,flat =

∫
d4x ψ̄(iγµ∂µ −m)ψ + θαβ

∫
d4x

[
− 1

2l
(ψ̄σ σ

α ∂β∂σψ)

+
7i

24l2
ε ρσ
αβ (ψ̄γργ5∂σψ)−M3(ψ̄σαβψ)

]
. (5.40)

The existence of the first order NC correction to the Dirac action in Minkowski

space is a non-trivial, and a priori unexpected, consequence of the NC AdS model.

It is important to note that we are working with “free” electrons (they interact only

with NC gravity). Therefore, if we were to deform classical Dirac action S
(0)
ψ,flat by

directly inserting the Moyal ?-product (minimal substitution), it follows from (2.74)

that we would obtain the same action.

From (5.40) we derive the Feynman propagator (in momentum space),

iSF (p) =

∫
d4x 〈Ω|Tψ(x)ψ̄(0)|Ω〉eipx

=
i

/p−m+ iε
+

i

/p−m+ iε
(iθαβDαβ)

i

/p−m+ iε
+ . . . , (5.41)

with

Dαβ :=
1

2l
σ σ
α pβpσ +

7

24l2
ε ρσ
αβ γργ5pσ −M3σαβ . (5.42)

The Feynman propagator is modified due to the space-time noncommutativity. The-

refore, we can say that electrons effectively interact with the NC background itself,

in the same manner in which it interacts with a background electromagnetic field.
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By varying (5.40) with respect to ψ̄ we derive the NC-deformed Dirac equation

for ψ in Minkowski space:[
i/∂ −m− 1

2l
θαβσ σ

α ∂β∂σ +
7i

24l2
θαβε ρσ

αβ γργ5∂σ − θαβM3σαβ

]
ψ = 0 . (5.43)

To simplify further analysis, we will assume that we have only two spatial dimensions

that are mutually incompatible, e.g. [x1, x2] = iθ12. Therefore we have θ12 = −θ21 =:

θ 6= 0, with all other components of θαβ equal to zero.

The equation (5.43) reduces to[
i/∂−m− θ

2l
(σ σ

1 ∂2∂σ−σ σ
2 ∂1∂σ)+

7iθ

12l2
(γ0γ5∂3−γ3γ5∂0)−2θM3σ12

]
ψ = 0 , (5.44)

and we choose ε0123 = 1.

Now we want to find an NC version of the dispersion relation for Dirac fermions.

Since hamiltonian commutes with the total momentum operator, we can assume

the plane wave ansatz ψ(x) = u(p)e−ip·x, where u(p) stands for a yet undetermined

spinor amplitude

u(p) =


a

b

c

d

 . (5.45)

With this choice, equation (5.44) can be represented in the momentum space as((
E −m −σ · p
σ · p −E −m

)
+ θM

)
u(p) = 0 , (5.46)

with matrix M given by

M =


A 1

2l
pzp− − 7

12l2
pz

1
2l
Ep−

1
2l
pzp+ −A − 1

2l
Ep+ − 7

12l2
pz

7
12l2

pz
1
2l
Ep− B 1

2l
pzp−

− 1
2l
Ep+

7
12l2

pz
1
2l
pzp+ −B

 . (5.47)

Quantities E and p denote energy and momentum of a particle, respectively, and
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the matrix elements A and B are given by

A := − 1

2l
(p2
x + p2

y) +
7E

12l2
− 2M3 ,

B := − 1

2l
(p2
x + p2

y)−
7E

12l2
− 2M3 , (5.48)

We use the Dirac representation of γ−matrices.

Non trivial solutions of the homogeneous matrix equation (5.46) which, when

written explicitly, states that (we use p± = px ± ipy)
E −m+ θA θ

2l
pzp− −pz − 7θ

12l2
pz −p− + θ

2l
Ep−

θ
2l
pzp+ E −m− θA −p+ − θ

2l
Ep+ pz − 7θ

12l2
pz

pz + 7θ
12l2

pz p− + θ
2l
Ep− −E −m+ θB θ

2l
pzp−

p+ − θ
2l
Ep+ −pz + 7θ

12l2
pz

θ
2l
pzp+ −E −m− θB




a

b

c

d

 = 0 ,

(5.49)

exist, if and only if, the determinant of the matrix /p−m+ θM (which is the matrix

appearing in (5.49)) equals zero. This condition will give us the dispersion relation.

The determinant depends on energy which is also represented as a perturbative

expansion in θ,

E =
+∞∑
n=0

E(n) , where E(n) ∼ θn

(length)2n+1
. (5.50)

If the determinant equals zero, it is equal to zero order-by-order in θ, and we can

derive the momentum dependence of E(1) correction which is enough to see how non-

commutativity modifies the dispersion relation. To get higher-order energy terms,

we need higher-order perturbative corrections to the Dirac action.

First we will consider an electron moving along z-direction, i.e. in the direction

orthogonal to the noncommutative xy-plane. The matrix equation (5.49) reduces to
E −m+ θA(0) 0 −pz − 7θ

12l2
pz 0

0 E −m− θA(0) 0 pz − 7θ
12l2

pz

pz + 7θ
12l2

pz 0 −E −m+ θB(0) 0

0 −pz + 7θ
12l2

pz 0 −E −m− θB(0)




a

b

c

d

 = 0 ,

(5.51)

where A(0) = A(px = py = 0) and, likewise, B(0) = B(px = py = 0).

55



Non trivial solution for spinor components a, b, c, and d exist if at least one of

the following two conditions is satisfied:[
E −m±

(
7E

12l2
− 2M3

)
θ

] [
E +m±

(
7E

12l2
+ 2M3

)
θ

]
=

[
pz ±

7pz
12l2

θ

]2

.

(5.52)

Four different solutions for the energy (up to the first order in θ) are

E1,2 = Ep ∓
[
m2

12l2
− m

3l3

]
θ

Ep

+O(θ2) ,

E3,4 = −Ep ±
[
m2

12l2
− m

3l3

]
θ

Ep

+O(θ2) , (5.53)

with Ep =
√
m2 + p2

z. This is reminiscent of the quantum Zeeman effect. The

deformation parameter θ plays the role of a constant background magnetic field

that causes the analogues splitting of atomic energy levels.

In the rest frame (p = 0) the energies reduce to:

E1,2(0) = m∓
[
m

12l2
− 1

3l3

]
θ +O(θ2) ,

E3,4(0) = −m±
[
m

12l2
− 1

3l3

]
θ +O(θ2) . (5.54)

We see that mass of an electron gets “renormalized” due space-time noncommuta-

tivity and the NC correction is linear in the deformation parameter.

By solving the matrix equation (5.51) for each of the four energy functions in

(5.53), we get four linearly independent solutions of the NC Dirac equation (up to

a normalization factor):

ψ1 ∼


1

0

pz
Ep+m

[
1 +

(
m

12l2
− 1

3l3

)
θ
Ep

]
0

 e−iE1t+ipzz ,

ψ2 ∼



0

1

0

pz
Ep+m

[
1−

(
m

12l2
− 1

3l3

)
θ
Ep

]


e−iE2t−ipzz ,
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ψ3 ∼



pz
Ep+m

[
1 +

(
m

12l2
− 1

3l3

)
θ
Ep

]
0

1

0

 e−iE3t−ipzz ,

ψ4 ∼


0

pz
Ep+m

[
1−

(
m

12l2
− 1

3l3

)
θ
Ep

]
0

1

 e−iE4t+ipzz . (5.55)

Spinors ψ1 and ψ2 (ψ3 and ψ4) correspond to positive (negative) energy solutions

of the NC Dirac equation. Note that, in the commutative case, the opposite helicity

(±1
2
) solutions have the same energy. However, in the NC theory, the solutions

with opposite helicity have different energies. The noncommutativity of space, here

taken to be constrained to xy-plane, causes the undeformed energy levels ±Ep to

split. The energy gap between the new levels is the same for ±Ep and it equals

2

[
m2

12l2
− m

3l3

]
θ

Ep

. (5.56)

From dispersion relations (5.53) we can derive the (group) velocity of an electron.

This velocity is defined by

v ≡ ∂E

∂p
. (5.57)

For positive (negative) helicity solution ψ1 (ψ2) we get

v1,2 =
p

Ep

[
1±

(
m2

12l2
− m

3l3

)
θ

E2
p

+O(θ2)

]
. (5.58)

These velocities can be represented as

v1,2 =
p

E1,2

+O(θ2) . (5.59)

Therefore, we may conclude that group velocity of an electron moving in the z-

direction depends on its helicity. This is analogues to the birefringence effect, i.e.

an optical property of a material having a refractive index that depends on the

polarization and propagation direction of light. NC background acts as a birefringent

medium for electrons propagating in it.
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The Dirac spinor ψ1 can now be represented as

ψ1 ∼


1

0
pz

E1+E1(0)

0

 e−iE1t+ipzz , (5.60)

and in the rest frame

ψ1(0) ∼


1

0

0

0

 e−iE1(0)t , (5.61)

where

E1(0) = m−
[
m

12l2
− 1

3l3

]
θ . (5.62)

The boost along z-direction in spinor representation is given by

S(ϕ) = cosh
(ϕ

2

)
I − sinh

(ϕ
2

) 0 σ3

σ3 0

 , (5.63)

where v = tanh(ϕ). If we take v = −v1 = − pz
E1

we can boost the rest frame solution

ψ1(pz = 0) into the solution ψ1(pz),

S(−pz)ψ1(0) = ψ1(pz) , (5.64)

with the boost matrix

S(−pz) =

√
E1(pz) + E1(0)

2E1(0)
I +

√
E1(pz)− E1(0)

2E1(0)

 0 σ3

σ3 0

 . (5.65)

This tells us that constant noncommutativity in the xy-plane is compatible with a

Lorentz boost along z-direction. Similar statement holds for the other solutions.

By the same procedure, we get the NC-deformed energy levels of an electron

moving in the NC xy-plane, i.e. an electron with momentum p = (px, py, 0),

E1,4 = ±Ep −
[
m

12l2
− 1

3l3

]
θ ,

E2,3 = ±Ep +

[
m

12l2
− 1

3l3

]
θ , (5.66)
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with Ep =
√
m2 + p2

x + p2
y. Note that, in this case, the NC corrections do not

depend on the momentum of an electron, as opposed to the NC corrections of the

energy levels of an electron moving along z-direction. Again, these energy levels

exactly reduces to (5.54) when p = 0.

The four independent Dirac spinors are:

ψ1 ∼



1

0

0

p+
Ep+m

[
1 +

(
7

12l2
− m

12l

)
θ
]


e−iE1t+ipxx+ipyy ,

ψ2 ∼


0

1

p−
Ep+m

[
1−

(
7

12l2
− m

12l

)
θ
]

0

 e−iE2t+ipxx+ipyy ,

ψ3 ∼


0

p+
Ep+m

[
1 +

(
7

12l2
− m

12l

)
θ
]

1

0

 e−iE3t−ipxx−ipyy ,

ψ4 ∼



p−
Ep+m

[
1−

(
7

12l2
− m

12l

)
θ
]

0

0

1

 e−iE4t−ipxx−ipyy . (5.67)

It turns out that these solutions cannot be obtained by boosting the corresponding

rest frame solutions. This was to be expected since, as we have already mentioned, by

choosing the canonical noncommutativity we have effectively fixed the coordinate

system. In other words, we work in a preferred coordinate system in which only

boosts along z-axis and rotations around z-axis are preserved. With this observation

we conclude the analysis of the Dirac field in the SO(2, 3)? model of NC gravity.
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6 NC Electrodynamics

In the previous section, we demonstrated that AdS gauge theory of gravity has

the capacity to consistently incorporate Dirac spinors, both classically and noncom-

mutativelly. We studied canonicaly deformed dispersion relation for free electrons,

that is, for electrons that interact only with NC gravity and not among themsel-

ves. To establish a complete theory of NC Electrodynamics, we have to include

U(1) gauge field in the SO(2, 3) framework. In the first order formalism, fermions

couple naturally to the gravitational field, however, to couple gauge fields to the

gravitational field one normally requires the Hodge dual operation. The definition

of Hodge dual requires an explicit use of the metric tensor, which means working in

the second order formalism. This becomes even more significant in the AdS gauge

theory where the basic dynamical variable is the SO(2, 3) gauge field that splits

into Lorentz SO(1, 3) spin-connection and vierbein only after imposing the physical

gauge. In this section, we present a classical SO(2, 3)×U(1) gauge-invariant action,

that reduces to the kinetic action for U(1) gauge field in the physical gauge. NC

correction is derived in the usual way and it is linear in θµν . Special attention is

placed on the residual NC effects after WI contraction and in Minkowski space. We

discuss how noncommutativity modifies relativistic Landau levels of an electron, in

a constant background magnetic field.

The content of this section is originally presented in [109].

6.1 U(1) gauge field in AdS framework

To include electromagnetic field in SO(2, 3) framework, we upgrade the original

SO(2, 3) gauge group to SO(2, 3) × U(1). The general gauge potential Ωµ consists

of two independent parts:

Ωµ = ωµ + Aµ . (6.1)

The first part is the SO(2, 3) gauge field ωµ that splits into SO(1, 3) spin-connection

and vierbein, and the second part, Aµ, is the U(1) gauge field. To Ωµ we associate

field strength

Fµν = ∂µΩν − ∂νΩµ − i[Ωµ,Ων ] = Fµν + Fµν , (6.2)

comprised of SO(2, 3) field strength Fµν = 1
2
F AB
µν MAB and U(1) field strength

Fµν = ∂µAν − ∂νAµ . (6.3)
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Following the approach of [110], we define SO(2, 3) × U(1) gauge-invariant action

for U(1) gauge field,

SA = − 1

16l
Tr

∫
d4x εµνρσ

(
fFµνDρφDσφφ+

i

3!
ffDµφDνφDρφDσφφ

)
+ c.c. (6.4)

where Dµ stands for SO(2, 3) × U(1) covariant derivative. The action involves an

additional auxiliary field f which is a U(1)-neutral AdS algebra-valued 0-form, trans-

forming in the adjoint representation of SO(2, 3), that is

f =
1

2
fABMAB , δεf = i[ε, f ] . (6.5)

with ε = 1
2
εABMAB. Its role is to provide the canonical kinetic term for U(1)

gauge field in the absence of Hodge dual operation that can not be defined without

explicitly introduction of the metric tensor. This, however, is not possible, given the

geometrical character of the action SA.

Field φ is also a U(1) scalar, and its covariant derivative reduces to the AdS part,

Dµφ = ∂µφ− i[Ωµ, φ] = ∂µφ− i[ωµ, φ] = Dµφ . (6.6)

This simplification is not a peculiarity of the Abelian group U(1); it also holds in a

more general case of non-Abelian Yang-Mills theory, as we shall see later.

The action (6.4) can be recast in a more explicit form,

SA =− 1

16l

∫
d4x εµνρσ

(
1

4
fABF CD

µν (Dρφ)E(Dσφ)FφG Tr(MABMCDΓEΓFΓG)

+
i

24
fABfCD(Dµφ)E(Dνφ)F (Dρφ)G(Dσφ)HφR Tr(MABMCDΓEΓFΓGΓHΓR)

+
1

2
fABFµν(Dρφ)E(Dσφ)FφG Tr(MABΓEΓFΓG)

)
+ c.c. (6.7)

After calculating traces (see Appendix D) we obtain

SA =− i

32l

∫
d4x εµνρσ

(
fABF CD

µν (Dρφ)E(Dσφ)FφG(ηFGεABCDE + 2ηADεBCEFG)

− 2ifABFµν(Dρφ)E(Dσφ)FφGεABEFG

− i

6
fABfAB(Dµφ)E(Dνφ)F (Dρφ)G(Dσφ)HφRεEFGHR

)
+ c.c. (6.8)
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The first term in (6.8) is purely imaginary, and since we imposed the reality condition

on SA by adding its complex conjugate, this term does not contribute. Therefore,

after the gauge fixing, when (Dµφ)a = eaµ and (Dµφ)5 = 0, the action reduces to

SA|g.f. = −1

8

∫
d4x εµνρσ

(
fabFµνεabefeερefσ +

1

12
fABfABεefghe

e
µe
f
νe
g
ρe
h
σ

)
=

1

2

∫
d4x e

(
fabeµae

ν
bFµν +

1

2
(fabfab + 2fa5f 5

a )
)
, (6.9)

with the vierbein determinant e = det(eaµ) =
√
−g.

Equations of motion for the components fab and fa5 of the auxiliary field f are

fa5 = 0 , fab = −eµaeνbFµν . (6.10)

Inserting them back into the action (6.9), we can eliminate the auxiliary field f . This

leaves us with the well-known action for pure U(1) gauge field in curved space-time,

SA|g.f. = −1

4

∫
d4x e gµρgνσFµνFρσ = −1

4

∫
d4x e F2 . (6.11)

6.2 Interacting Dirac fermions

The Dirac spinor field has already been treated in detail in Section 5. Here we

will simply generalize those results to include U(1) gauge field, the only difference

being an additional Aµ term in the total covariant derivative. In this manner, we

introduce interaction between Dirac spinors mediated by Aµ. Dirac spinor field ψ

transforms in the fundamental representation of SO(2, 3)× U(1) gauge group,

δεψ = iεψ =
i

2
εABMABψ + iαψ , (6.12)

where εAB are infinitesimal antisymmetric gauge parameters of SO(2, 3), and α is an

infinitesimal U(1) gauge parameter. The covariant derivative of the full SO(2, 3)×
U(1) gauge group in the fundamental representation is given by

Dµψ = ∂µψ − iΩµψ = ∂µψ − i(ωµ + Aµ)ψ

= DLµψ +
i

2
eaµγaψ , (6.13)

where we introduced SO(1, 3) × U(1) covariant derivative DLµ = DL
µ − iAµ and we

set q = −1 for an electron.
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The fermionic action consists of two parts: the kinetic action

Sψ,kin =
i

12

∫
d4x εµνρσ

(
ψ̄DµφDνφDρφDσψ −Dσψ̄DµφDνφDρφψ

)
, (6.14)

and the three mass-like action terms

Sψ,m =
i

144l

(
m− 2

l

)∫
d4x εµνρσ

(
ψ̄DµφDνφDρφDσφφψ

− ψ̄DµφDνφDρφφDσφψ + ψ̄DµφDνφφDρφDσφψ
)

+ c.c. (6.15)

After the symmetry breaking, the total spinor action reduces to

Sψ|g.f. = Sψ,kin|g.f. + Sψ,m|g.f. =

∫
d4x e

(
iψ̄γσ(DL

σ − iAσ)ψ −mψ̄ψ
)
. (6.16)

This is the Dirac action for charged fermions with mass m in curved space-time.

Together with the U(1) kinetic term (6.11), it constitutes the total action for classical

electrodynamics in curved space-time.

6.3 Canonical deformation of AdS Electrodynamics

To establish an NC field theory with SO(2, 3)?×U(1)? gauge group, we need NC

spinor field ψ̂, NC gauge potential Ω̂µ and NC adjoint field φ̂. The corresponding

NC field strength is defined as

F̂µν = ∂µΩ̂ν − ∂νΩ̂µ − i[Ω̂µ
?, Ω̂ν ] . (6.17)

The covariant derivatives of ψ̂ and φ̂ are

Dµψ̂ = ∂µψ̂ − iΩ̂µ ? ψ̂ , (6.18)

Dµφ̂ = ∂µφ̂− i[Ω̂µ
?, φ̂] . (6.19)

Fields ψ̂ and φ̂, along with their covariant derivatives (6.18) and (6.19), transform

in the fundamental and adjoint representation, respectively, under infinitesimal NC

gauge transformations,

δ?ε ψ̂ = iΛ̂ε ? ψ̂ , δ?εDµψ̂ = iΛ̂ε ?Dµψ̂ ,

δ?ε φ̂ = i[Λ̂ε
?, φ̂] , δ?εDµφ̂ = i[Λ̂ε

?, Dµφ̂] . (6.20)
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The transformation laws for NC gauge potential and field strength are

δ?ε Ω̂µ =∂µΛ̂ε + i[Λ̂ε
?, Ω̂µ] , (6.21)

δ?ε F̂µν =i[Λ̂ε
?, F̂µν ] . (6.22)

In these variations, Λ̂ε is an NC gauge parameter of the full SO(2, 3)?×U(1)? gauge

group, and Λ̂ε = 1
2
εABMAB + α, as θαβ → 0.

The SW map enables us to express NC fields in terms of the corresponding

commutative fields, without introducing new degrees of freedom in the theory:

ψ̂ = ψ − 1

4
θαβΩα(∂β +Dβ)ψ +O(θ2) , (6.23)

φ̂ = φ− 1

4
θαβ{Ωα, (∂β +Dβ)φ}+O(θ2) , (6.24)

Ω̂µ = Ωµ −
1

4
θαβ{Ωα, ∂βΩµ + Fβµ}+O(θ2) . (6.25)

Using these expansions, we can derive similar ones for the field strength, and cova-

riant derivatives of spinor and adjoint field. They are given by

F̂µν =Fµν −
1

4
θαβ{Ωα, (∂β +Dβ)Fµν}+

1

2
θαβ{Fαµ,Fβν}+O(θ2) , (6.26)

Dµψ̂ =Dµψ −
1

4
θαβΩα(∂β +Dβ)Dµψ +

1

2
θαβFαµDβψ +O(θ2) , (6.27)

Dµφ̂ =Dµφ−
1

4
θαβ{Ωα, (∂β +Dβ)Dµφ}+

1

2
θαβ{Fαµ,Dβφ}+O(θ2) . (6.28)

A non-expanded NC action with SO(2, 3)? × U(1)? gauge symmetry is obtained

directly from the classical action (6.4) by introducing Moyal ?-product,

S?A = − 1

16l
Tr

∫
d4x εµνρσ

(
f̂ ? F̂µν ?Dρφ̂ ?Dσφ̂ ? φ̂

+
i

3!
f̂ ? f̂ ?Dµφ̂ ?Dνφ̂ ?Dρφ̂ ?Dσφ̂ ? φ̂

)
+ c.c. (6.29)

This NC action involves an auxiliary NC field f̂ , classically defined in (6.5), that

transforms in the adjoint representation of the SO(2, 3)? × U(1)? gauge group

δ?ε f̂ = i[Λ̂ε
?, f̂ ] . (6.30)

The transformation laws (6.20), (6.22) and (6.30) ensure the invariance of action

(6.29) under SO(2, 3)? × U(1)? NC gauge transformations.
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Again, we use the general rule for calculating linear NC correction to ?-product

of a pair of adjoint NC fields(
Â ? B̂

)(1)

=− 1

4
θαβ{Ωα, (∂β +Dβ)AB}+

i

2
θαβDαADβB

+ cov(Â(1))B + Acov(B̂(1)) , (6.31)

where cov(Â(1)) is the covariant part of A′s first order NC correction, and cov(B̂(1)),

the covariant part of B′s first order NC correction. After some simplification, inc-

luding a few partial integrations, the first order NC correction before gauge fixing

can be expressed as

S
(1)
A =S

(1)
Af + S

(1)
Aff

=
θαβ

32l
Tr

∫
d4x εµνρσ

(
1

2
{Fαβ, f}FµνDρφDσφφ+ ifDβFµνDα(DρφDσφφ)

− f{Fαµ,Fβν}DρφDσφφ− ifFµνDα(DρφDσφ)Dβφ

− ifFµν(DαDρφ)(DβDσφ)φ− fFµν{{Fαρ,Dβφ},Dσφ}φ

+
i

3!

(
1

2
{Fαβ, f 2}DµφDνφDρφDσφφ− f 2{[{Fαµ,Dβφ},Dνφ],DρφDσφ}φ

− if 2
(
Dα(DµφDνφDρφDσφ)Dβφ+Dα(DµφDνφDρφ)(DβDσφ)φ (6.32)

+
(
Dα(DµφDνφ)(DβDρφ) + (DαDµφ)(DβDνφ)Dρφ

)
Dσφφ

)))
+ c.c. ,

where we distinguish the linear f -part and the quadratic f 2-part, and all terms are

manifestly SO(2, 3) × U(1) gauge-invariant, by the virtue of SW map. Note also

that Dµφ = Dµφ, since φ is not charged under U(1).

After imposing the physical gauge condition, the six terms of S
(1)
Af are a bit

lengthy, are we present them in Appendix B. The S
(1)
Aff part is much simpler and it

is given by

S
(1)
Aff |g.f. =

θαβ

8

∫
d4x e Fαβf 2 =

θαβ

8

∫
d4x e Fαβ(fabfab + 2fa5f 5

a ) . (6.33)

The gravitational part (that which involves quantities like curvature and torsion)

of S
(1)
Aff |g.f. turns out to be purely imaginary, and therefore provides no contribution

after adding its complex conjugate.
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Now we have to evaluate the gauge-fixed NC action S?A|g.f. = S
(0)
A |g.f. +S

(1)
A |g.f. on

the EoMs of the auxiliary field f , up to first order in θαβ. The EoMs up to order

O(θ) are obtained by varying S?A|g.f. over fab and fa5 independently. The on-shell

first order action, denoted by S
(1)
A,EoM |g.f., has two contributions: the first one comes

from evaluating S
(1)
A |g.f. on the classical (zero order) EoMs for f , which we have

already calculated (6.10). The second contribution comes from evaluating S
(0)
A |g.f.

on the first order EoMs for f . It is straightforward, although tedious, to compute the

first order EoMs, but as it turns out, this is not necessary. It can be readily checked

that, if we work only up to first order, the classical action (6.9) gets annihilated after

inserting the first order EoMs for f , whatever they might be. Thus, we only need

to insert classical EoMs for f (6.10) in the first order action S
(1)
A |g.f., thus yielding

S
(1)
A,EoM |g.f. =

6∑
j=1

S
(1)
A,EoMf.j|g.f. + S

(1)
A,EoMff |g.f. , (6.34)

S
(1)
A,EoMf.1|g.f. =

θαβ

64

∫
d4x e

{
FµνRµνab

(
R ab
αβ −

2

l2
eaαe

b
β

)
+ Fρσeaρebσ

(
RµνabR

cd
αβ eµc e

ν
d −

2

l2
Rαβab

)
+ 4Fρµecρ

(
RµνacR

ab
αβ eνb −

2

l2
Rµβace

a
α

)
+ FλτeλaeτbR ab

αβ

(
R mn
µν eµme

ν
n −

12

l2
)

+
2

l2
FµνT a

αβ

(
Tµνa − 2Tρνme

ρ
ae
m
µ

)
− 2

l2
Fαβ

(
R mn
µν eµme

ν
n −

12

l2
− 4l2FµνFµν

)}
+ c.c. (6.35)

S
(1)
A,EoMf.2|g.f. =

θαβ

8

∫
d4x e

{
− (DL

βR
mc

µν )(DL
αe

r
ρ)e

λ
c

(
eνm(F µ

λ eρr −F
ρ

λ e
µ
r ) + F ν

λ eµr e
ρ
m

)
+

1

l2
F µ
ρ eρc

(
DL
βT

c
αµ − eβbR bc

αµ

)
− 4

l2
F µ
ν (DL

αe
r
ρ)(D

L
β e

m
µ )eνme

ρ
r

− 1

l2
(DL

αe
r
ρ)e

ρ
r

(
eνcF

µ
β T c

µν − eνcF µ
ν T c

µβ

)
+

1

2l2
T r
αβ T

c
µν F ν

λ eλc e
µ
r

+
1

l2
(DL

αe
r
ρ)e

ν
r

(
T m
µν

(
F µ
β eρm −F

ρ
β e

µ
m

)
+ T m

βν F ρ
µ e

µ
m

)
+

2

l2
F ρ
λ e

λ
c (D

L
αe

r
ρ)(D

L
β e

c
ν)e

ν
r +

1

l4
Fαβ

}
+ c.c. (6.36)

S
(1)
A,EoMf.3|g.f. = −θ

αβ

32

∫
d4x e

{
Fµν

(
Rβνam

(
R am
αµ − 4

l2
eaαe

m
µ

)
+ 8FαµFβν

)
+ FλτR am

αµ R bn
βν

(
eµae

ν
me

λ
b e
τ
n + eλae

τ
me

µ
b e
ν
n + 2eλne

τ
m(eµae

ν
b − eνae

µ
b )
)

+
2

l2
eλne

τ
b

(
2FατR bn

βλ −FλτR bn
αβ

)
+

2

l2
FµνT a

αµ Tβνa

}
+ c.c. (6.37)
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S
(1)
A,EoMf.4|g.f. + S

(1)
A,EoMf.5|g.f. =

θαβ

32

∫
d4x e

{
+R ab

µν (DL
αe

m
ρ )(DL

β eσm)
(
Fµνeρaeσb + Fρσeµaeνb − 4Fµρeνaeσb

)
− 1

l2
R ab
µν

(
Fµνeαaeβb + Fαβeµaeνb + 4Fµβe

ν
ae
σ
b

)
− 1

l2
Fρσ(DL

αe
m
ρ )(DL

β eσm)

+
2

l2
T c
µν (DL

αe
d
ρ)
(
Fµν(2eρceβd − e

ρ
deβc) + 2F µ

β (eρce
ν
d − e

ρ
de
ν
c )

+ 2Fρµ(2eνceβd − eνdeβc) + 2Fρβe
µ
c e
ν
d

)
− 2

l2
FρµTµνcT d

αβ e
c
ρe
ν
d (6.38)

− 4

l2
Tβνa(D

L
αe

d
ρ)e

a
λ

(
Fλνeρd −F

λρeνd
)

+
4

l2
R c
βν ae

a
λ

(
Fλνeαc −Fλαeνc

)
− 6

l4
Fαβ

}
+ c.c.

S
(1)
A,EoMf.6|g.f. = −θ

αβ

32

∫
d4x e

{
Fκξeaκebξeµe eνf

(
R ef
αβ Rµνab − 2R ef

βν Rαµab

)
+ 8Fµν

(
FαβFµν − 2FαµFβν

)
+

2

l2
FµνeaµebνRαβab −

4

l2
Fβνενae

ρ
bR

ab
αρ

+
4

l2
Fκµeaκeρe

(
TρµaT

e
αβ + TµβaT

e
αρ + TβρaT

e
αµ

)
− 8

l4
Fαβ

}
+ c.c. (6.39)

And finally, the f 2-term,

S
(1)
A,EoMff |g.f. =

θαβ

8

∫
d4x e FαβF2 . (6.40)

Again we have non-trivial WI contraction. After performing contractions and some

simplification, we obtain

S
(1)
A

WI
=
θαβ

32

∫
d4x e

{
FµνRµνρσR

ρσ
αβ −R µν

αβ RµνρσFρσ

− 4FµρRµνρσR
νσ

αβ +R ρσ
αβ FρσR− 4FρσRασRβρ

− 4FρσR νρ
αµ R µσ

βν − 2FµνR ρσ
αµ Rβνρσ − 4FαβF2 + 16FµνFαµFβν

− 8(DL
βR

mc
µν )(DL

αe
r
ρ)e

λ
c

(
F µ
λ eνme

ρ
r −F

ρ
λ e

µ
r e
ν
m + F ν

λ eµr e
ρ
m

)
+ 2R ab

µν (DL
αe

m
ρ )(DL

β eσm)
(
Fµνeρaeσb + Fρσeµaeνb − 4Fµρeνaeσb

)}
. (6.41)

If canonical deformation and WI contraction commute, we should obtain the same

result for the NC action defined by minimal substitution e gµρgνσFµνFρσ → e ? gµρ ?

gνσ ? Fµν ? Fρσ under the integral. This remains to be seen.
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6.4 NC theory of interacting Dirac fermions

The SO(2, 3)? model of free (not coupled to U(1) gauge field) Dirac spinor field

has already been treated in Section 5 and the first order NC correction has been

calculated (5.38). To include U(1)-interaction, we generalize this result by making

substitutions DL
µ → DLµ = DL

µ − iAµ and Fµν → Fµν = Fµν + Fµν , yielding

S
(1)
ψ,m|g.f. =

θαβ

4

(
m− 2

l

)∫
d4x e ψ̄

{
− i(DL

αe
a
µ)eµaDLβ +

1

6
ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 1

3
(DL

αe
a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb −

1

9l
(DL

αe
a
µ)eµaγβ −

1

24
R ab
αβ σab

− 1

3
R ab
αµ eµae

c
βσbc −

1

18l
T a
αβ γa −

7

18l
T a
αµ e

µ
aγβ −

1

2l2
σαβ −

3

2
Fαβ

}
ψ + c.c. (6.42)

S
(1)
ψ,kin|g.f. =

θαβ

8

∫
d4x e ψ̄{

−R ab
αµ

(
eµaγb +

i

2
eµc ε

c
abd γ

dγ5
)
DLβ +

1

2
R ab
αβ

(
eσb γa −

i

2
ε d
abc e

σ
d γ

cγ5
)
DLσ

− i

3
R ab
αµ ε d

abc e
c
β(eµde

σ
s − eµs eσd) γsγ5DLσ +

i

l
T a
αµ

(
eµa − ie

µ
bσ

b
a

)
DLβ

− i

l
T a
αβ

(
eσa +

i

2
eµaσ

σ
µ

)
DLσ −

2

3l
T a
αµ ε

cd
ab ebβe

µ
c e
σ
dγ

5DLσ +
7i

6l2
ε d
abc e

a
αe

b
βe

σ
dγ

cγ5DLσ

− 2
(

(DL
αe

a
µ)(eµae

σ
b − eσae

µ
b ) γb +

1

l
σ σ
α

)
DLβDLσ −

2

3l
ecα(DL

β e
b
ν)ε

ds
bc eνde

σ
sγ5DLσ

+ i(DL
αe

a
µ)(DL

β e
b
ν)e

µ
c e
ν
de
σ
s

(2

3
ε cds
b γa − ηabεcdrsγr

)
γ5DLσ

− 1

l
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )ecβσ

b
cDLσ −

1

l
(DL

αe
a
µ)
(

4ieµa + eµbσ
b
a

)
DLβ

+
1

16l
R ab
αβ σab −

1

2l
R ab
αµ

(5

3
eµae

c
β + eβae

µc
)
σbc

− 3

4l2
T a
αβ γa −

1

2l2
T a
αµ

(
eµaγβ − eβaγµ

)
− 8

3l3
σαβ

+
2

3l
(DL

αe
a
µ)(DL

β e
b
ν)
(
ηabσ

µν − 2(eµae
ν
c − eµc eνa)σcb

)
− 1

2l2
(DL

αe
a
µ)
(

3eµaγβ − eβaγµ
)

+ 3iFαβeσsγsDLσ − 2iFαµeµmγmDLβ −
5

l
Fαβ

}
ψ + c.c. (6.43)

Putting the pieces together, we come to the final result: the linear NC deformation

of the classical U(1) gauge field theory in curved space-time,

S?|g.f. = S(0)|g.f. + S
(1)
ψ,kin|g.f. + S

(1)
ψ,m|g.f. + S

(1)
A,EoMf |g.f. + S

(1)
A,EoMff |g.f. . (6.44)

Action S?|g.f., describing NC Electrodynamics, pertains even in Minkowski space.
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6.5 NC Electrodynamics in Minkowski space

There are some residual effects of space-time noncommmutativity coming from

the terms in S?|g.f. that survive the flat space-time limit. Therefore, from now on

we work in Minkowski space.

The action for NC electrodynamics in Minkowski space, up to the first order in θαβ,

is given by

S?flat =S
(0)
flat + S

(1)
flat =

∫
d4x ψ̄(i/̃D −m)ψ − 1

4

∫
d4x FµνFµν

+ θαβ
∫

d4x

(
1

2
FαµFβνFµν −

1

8
FαβFµνFµν

)

+ θαβ
∫

d4x ψ̄

(
− 1

2l
σ σ
α D̃βD̃σ +

7i

24l2
ε ρσ
αβ γργ5D̃σ (6.45)

−
(
m

4l2
+

1

6l3

)
σαβ +

3i

4
Fαβ /̃D − i

2
FαµγµD̃β −

(
3m

4
− 1

4l

)
Fαβ

)
ψ ,

where we introduced flat space-time covariant derivative D̃µ := ∂µ− iAµ.This action

is obviously different from other actions describing NC Electrodynamics already

present in the literature [111–113]. The new terms stem from the residual interaction

with NC gravity, and they will trigger some non-trivial phenomena, such as deformed

relativistic Landau levels of an electron. Also, we point out that not all of these

terms vanish under WI contraction.

6.6 Deformed equations of motion

By varying (6.45) over Aρ we obtain NC Maxwell equation with sources. Up to

to first order, the equation is given by

∂µFµρ −
1

4
θαβFαβ∂µFµρ −

1

2
θαρFαν∂µFµν + θαβ∂µ(F µ

α F
ρ

β ) (6.46)

= −ψ̄γρψ − i

2l
θαρψ̄σ σ

α Dσψ −
i

2l
θαβψ̄σ ρ

α Dβψ +
i

2l
θαβ∂β(ψ̄σ ρ

α ψ)

− 7

24l2
θαβε λρ

αβ ψ̄γλγ5ψ −
i

2
θαβ∂α(ψ̄γρDβψ) +

i

2
θρβ∂µ(ψ̄γµDβψ) +

1

2l
θαρ∂α(ψ̄ψ)

WI
= −ψ̄γρψ − i

2
θαβ∂α(ψ̄γρDβψ) +

i

2
θρβ∂µ(ψ̄γµDβψ) . (6.47)

The analysis of this equation remains to be done.
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By varying NC action (6.45) over ψ̄ we obtain a deformed Dirac equation for an

electron coupled to electromagnetic field:

(
i/∂ −m+ /A+ θαβMαβ

)
ψ = 0 , (6.48)

where θαβMαβ is given by

θαβMαβ = θαβ

{
− 1

2l
σ σ
α D̃βD̃σ +

7i

24l2
ε ρσ
αβ γργ5D̃σ −

(
m

4l2
+

1

6l3

)
σαβ

+
3i

4
Fαβ /̃D − i

2
FαµγµD̃β −

(
3m

4
− 1

4l

)
Fαβ

}
. (6.49)

From (6.49) we see that there are some new interaction terms in (6.48). For an

electron, we set q = −1.

6.7 Electron in background magnetic field

Using the NC-deformed Dirac equation (6.48) we can analyze the special case

of an electron propagating in constant magnetic field B = Bez. Accordingly, we

choose Aµ = (0, By, 0, 0). An appropriate ansatz for (6.48) is

ψ =

ϕ(y)

χ(y)

 e−iEt+ipxx+ipzz . (6.50)

Spinor components and energy function are all represented as perturbation series in

powers of the deformation parameter,

ϕ = ϕ(0) + ϕ(1) +O(θ2) , (6.51)

χ = χ(0) + χ(1) +O(θ2) , (6.52)

E = E(0) + E(1) +O(θ2) . (6.53)

Inserting the ansatz (6.50) in the Dirac equation (6.48) yields

[
Eγ0 − pxγ1 + iγ2 d

dy
− pzγ3 −m+Byγ1 + θαβMαβ

]ϕ(y)

χ(y)

 = 0 . (6.54)
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The zeroth order (classical, undeformed) equation is therefore

[
E(0)γ0 − pxγ1 + iγ2 d

dy
− pzγ3 −m+Byγ1

]ϕ(0)

χ(0)

 = 0 , (6.55)

and at the first order we have

[
E(0)γ0 − pxγ1 + iγ2 d

dy
− pzγ3 −m+Byγ1

]ϕ(1)

χ(1)


= −

[
E(1)γ0 + θαβMαβ

]ϕ(0)

χ(0)

 . (6.56)

Taking the adjoint of (6.55),

ψ̄(0)

[
E(0)γ0 − pxγ1 − iγ2

←−
d

dy
− pzγ3 −m+Byγ1

]
= 0 , (6.57)

multiplying (6.56) by ψ̄(0) from the left and integrating over y, yields

E(1)

∫
dy ψ̄(0)γ0ψ(0) = −θαβ

∫
dy ψ̄(0)Mαβψ

(0) .

Therefore, the first order NC correction to the energy of an electron is simply

E(1) =
−θαβ

∫
dy ψ̄(0)Mαβψ

(0)∫
dy ψ̄(0)γ0ψ(0)

. (6.58)

We us calculate explicitly the zeroth order solution ψ(0). From the unperturbed

equation (6.55) we derive the equation for ϕ(0) spinor component. It is given by[
d2

dy2
− (px −By)2 + (E(0))2 − p2

z −m2 −Bσ3

]
ϕ(0)(y) = 0 .

The unperturbed energy levels of an electron in constant magnetic field (relativistic

Landau levels) are

E(0)
n,s =

√
p2
z +m2 + (2n+ s+ 1)B , (6.59)

where n = 0, 1, 2, . . . is the principal quantum number, while s = ±1 is the eigen-

value of the Pauli matrix σ3.
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The complete undeformed Dirac spinor is

ψ(0)
n,s =

ϕ(0)
n,s

χ
(0)
n,s

 e−iE
(0)
n,st+ipxx+ipzz , (6.60)

with components

ϕ(0)
n,s = Φnϕs , (6.61)

χ(0)
n,s =

1

E
(0)
n,s +m

[
−
√
B

2

(√
n+ 1Φn+1σ− −

√
nΦn−1σ+

)
+ pzΦnσ3

]
ϕs , (6.62)

where σ± = σ1±iσ2, and ϕs is the eigenvector of σ3 for eigenvalue s = ±1. Functions

Φn(ξ) (n = 0, 1, ...) are Hermitian functions defined by

Φn(ξ) =
1√

2nn!
√
πB

Hn

(
ξ√
B

)
e−

ξ2

2B ,

where Hn are Hermitian polynomials and ξ = By − px.

Normalization of (6.60) gives us

∫
dy ψ̄(0)

n,sγ
0ψ(0)

n,s =
2E

(0)
n,s

B(E
(0)
n,s +m)

. (6.63)

Using (6.58), we find

E(1)
n,s = −

θαβ
∫
dy ψ̄

(0)
n,sMαβψ

(0)
n,s∫

dy ψ̄
(0)
n,sγ0ψ

(0)
n,s

. (6.64)

In particular, for θ12 = −θ21 = θ 6= 0 and all the other components θαβ equal to

zero, we find

E(1)
n,s = − θs

E
(0)
n,s

(
m2

12l2
− m

3l3

)(
1+

B

(E
(0)
n,s +m)

(2n+s+1)

)
+
θB2

2E
(0)
n,s

(2n+s+1) . (6.65)

In the absence of magnetic field we confirm the already established result,

E(1)
n,s = − sθ

E
(0)
n,s

(
m2

12l2
− m

3l3

)
.

The NC energy levels depend on s = ±1 and we see that constant noncommutative

background causes Zeeman-like splitting of the undeformed energy levels. Therefore,

it acts as a birefringent medium.
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To obtain the non-relativistic limit of NC energy levels we expand the classical

energy E
(0)
n,s assuming that p2

z, B � m2:

E(0)
n,s =

√
p2
z +m2 + (2n+ s+ 1)B = m

(
1 +

p2
z + (2n+ s+ 1)B

m2

)1/2

= m

(
1 +

p2
z + (2n+ s+ 1)B

2m2
− (p2

z + (2n+ s+ 1)B)2

8m4

)
.

Expending (6.65), we obtain the first order NC correction to the energy levels of a

non-relativistic electron:

E(1)
n,s =

(
θs

3l3
− θsm

12l2

)(
1− p2

z

2m2
+

3p4
z

8m4
+

3p2
z(2n+ s+ 1)B

8m4

)
+
θB2

2m
(2n+ s+ 1)

(
1− p2

z + (2n+ s+ 1)B

2m2
+

3(pz + (2n+ s+ 1)B)2

8m4

)
.

If we take pz = 0, the non-relativistic NC energy levels reduce to

En,s = E(0)
n,s + E(1)

n,s +O(θ2)

= m+
θs

3l3
− θsm

12l2
+

2n+ s+ 1

2m
(B + θB2)− (2n+ s+ 1)2

8m3
(B2 + 2θB3) +O(θ2)

= m− sθ
(
m

12l2
− 1

3l3

)
+

2n+ s+ 1

2m
Beff −

(2n+ s+ 1)2

8m3
B2
eff +O(θ2) , (6.66)

where we introduced Beff = (B + θB2) as an effective magnetic field. As in the the

case of non-interacting electrons [105], the spin-dependent mass-shift is apparent.

If we compare this expression with the one for undeformed energy levels E
(0)
n,s, we

see that the only effect of θ-constant noncommutaivity is to modify the mass of an

electron and the value of the background magnetic field. This result is in accord

with string theory. Namely, in [41] it is argued that the endpoint coordinate of an

open string constrained to a D-brane in the presence of a constant Kalb-Ramond

B-field satisfy constant noncommutativity algebra. The implication is that NC field

theory can be interpreted as a low energy limit, i.e. an effective theory, of the theory

of open strings.

Having the energy function (6.66), we can derive NC deformation of the induced

magnetic moment of an electron in the nth Landau level, in the limit of weak

magnetic field:

µn,s = −∂En,s
∂B

= −µB(2n+ s+ 1)(1 + θB) , (6.67)

where µB = e}
2mc

is the Bohr magneton. We recognize−(2n+1)µB as the diamagnetic

moment of an electron and −sµB as the spin magnetic moment. The θB-term
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is another potentially observable phenomenological prediction. It is a linear NC

correction to the induced dipole moment of an electron. As a next step, one could

calculate the induced magnetization (induced magnetic moment per unit area) of a

certain material. For that matter, we need a better understanding of the realization

of noncommutaivity in materials.

Canonical NC deformation of relativistic Landau levels has been considered in

[114] and for other types of NC space-times in [115, 116]. It can be seen both from

(6.65) and (6.66) that NC correction to (non)-relativistic Landau levels depends on

the mass m, the principal quantum number n and the spin s. In particular, the

NC correction to energy levels will be different for different levels. It would be

interesting to explore how space-time noncommutativity modifies the degeneracy

of Landau levels and we plan to address this problem in the future. It is well

known that the physics of the Lowest Landau Level (LLL) is closely related to the

physics of Quantum Hall Effect (QHE). Using the results of this section, we hope

to obtain some constraints on noncommutaivity parameter from condensed matter

experiments.

Also, starting from (6.45), we can analyze renormalizability properties of our

model. It was found that the so-called Minimal NC Electrodynamics, a theory

obtained by introducing directly the NC Moyal ?-product in the classical Dirac

action in Minkowski space,

S?min =

∫
d4x ˆ̄ψ ? (iγµ∂µ −m)ψ̂ − 1

4

∫
d4x F̂µν ? F̂

µν ,

is not a renormalisabile theory, because of the fermionic loop contributions [111, 112].

It would be interesting to see if additional NC terms that are present in the NC

Eletrodynamics action (6.45) can improve this behaviour.
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7 NC Yang-Mills theory

NC correction to classical Yang-Mills action could be relevant for the physics of

the early Universe. Namely, the standard cosmological model predicts that ther-

modynamic conditions in the early Universe were such that nuclear matter existed

in a state of quark-gluon plasma (QGP), a distinct phase of nuclear matter that

exists only at extremely high temperatures and densities, when low-energy com-

posite states - hadrons - disintegrate into their fundamental constituents - quarks

and gluons. On the other hand, it is generally expected that quantum gravity ef-

fects, such as space-time noncommutativity, become relevant near the cosmological

singularity (just after the Big Bang). The existence of QGP, as a theoretical possi-

bility, was realized in the mid-seventies after the development of the Quark Model

of hadrons and the non-Abelian gauge field theory of strong interaction - Quantum

Chromodynamics (QCD). The latter exhibits several remarkable features. At short

distances, or large momenta q, the effective (renormalized) coupling constant αs(q
2)

decreases logarithmically, and quarks and gluons appear to be weakly coupled, the

so-called asymptotic freedom. Since the interaction between quarks diminishes as

they approach each other, at sufficiently high density, they are no longer confined

inside hadrons, and become free. On the other hand, at large distances (or small

momenta), the coupling becomes strong, resulting in the phenomena of confine-

ment (quarks do not exist as isolated particles at low energies; they occur only

as constituents of hadronic bound states - mesons and baryons). The commonly-

adopted cosmological scenario of the subsequent cooling of the initially hot and

dense Universe, assumes a series of phase transitions through various spontaneous

symmetry-breakings related to non-Abelian gauge fields. Specifically, the hadroni-

zation of QGP is related to the spontaneous chiral symmetry breaking, described

by a non-Abelian theory of strong interactions based on SUc(3) symmetry group,

i.e. the QCD. The nature of this phase transition determines, to a great extent, the

evolution of the early Universe.

That being said, our primary goal in this section is to generalize the previous

results related to U(1) gauge field and consistently incorporate non-Abelian Yang-

Mills gauge field (describing gluons) into the SO(2, 3)? framework. Deformation

of the classical action, invariant under SO(2, 3) × SU(N) gauge group, will reveal

the sort of couplings of quarks, gluons and gravity that arise due to space-time

noncommutativity. This result can be regarded as the first step towards a full

theoretical treatment of quarks and gluons in NC space-time.

The content of this section is originally presented in [117].
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7.1 Yang-Mills field in AdS framework

Introducing non-Abelian SU(N) gauge field, Aµ = AIµTI , requires an upgrade of

the original gauge group SO(2, 3) to SO(2, 3) × SU(N). Generators TI of SU(N)

group are hermitian and traceless, and they satisfy the (anti)commutation relations:

[TI , TJ ] = ifIJKTK and {TI , TJ} = dIJKTK , with antisymmetric structure constants

fIJK , and totally symmetric symbols dIJK = Tr({TI , TJ}TK). We choose the nor-

malization Tr(TITJ) = δIJ . SU(N) group indices I, J ,... run from 1 to N2−1. The

total gauge potential of SO(2, 3)× SU(N) group is

Ωµ =
1

2
ωABµ MAB ⊗ I + I⊗ AIµTI , (7.1)

and the corresponding total field strength Fµν is the sum of the gravitational part

Fµν and the Yang-Mills part Fµν ,

Fµν =
1

2
FAB
µν MAB ⊗ I + I⊗F IµνTI , (7.2)

with the usual F Iµν = ∂µA
I
ν−∂νAIµ+gf IJKAJAK , where g is the Yang-Mills coupling

strength.

Action for Yang-Mills gauge field (a suitable generalization of the U(1) action

from the previous section),

SA = − 1

16l
Tr

∫
d4x εµνρσ

(
fFµνDρφDσφφ+

i

6
f 2DµφDνφDρφDσφφ

)
+ c.c. (7.3)

is real and invariant under SO(2, 3)×SU(N) gauge transformations. It involves an

auxiliary field f defined by:

f =
1

2
fAB,IMAB ⊗ TI , δεf = i[ε, f ] , (7.4)

where we have a gauge parameter ε that consists of the SO(2, 3) and the SU(N)

part,

ε =
1

2
εABMAB ⊗ I + I⊗ εITI . (7.5)

Auxiliary field f transforms in the adjoint representation of SO(2, 3) and SU(N)

group. The role of this field is to produce the canonical kinetic term in curved space-

time for the non Abelian SU(N) gauge field in the absence the Hodge dual operator,

which otherwise cannot be defined without an explicit use of the metric tensor. We

still need to use an auxiliary field φ = φAΓA to produce symmetry breaking. It

76



is invariant under SU(N) gauge transformations and its full covariant derivative is

given by:

Dσφ = ∂σφ− ig[Ωσ, φ] = ∂σφ− i[ωσ, φ] = Dσφ . (7.6)

By setting φa = 0 and φ5 = l in (7.3) we break SO(2, 3)× SU(N) gauge symmetry

down to SO(1, 3)× SU(N) and obtain:

SA|g.f. =
1

2

∫
d4x e fab,IF Iµνeµaeνb +

1

4

∫
d4x e (fab,If Iab + 2fa5,If Ia5) . (7.7)

Varying this action independently in components f Iab and f Ia5 of the auxiliary field,

we get their equations of motion (EoMs):

f Ia5 = 0 , f Iab = −eµaeνbF Iµν . (7.8)

By evaluating (7.7) on these EoMs we eliminate the auxiliary field, and obtain

SA,EoM |g.f. = −1

4

∫
d4x
√
−g gµρgνσF IµνF Iρσ , (7.9)

which is exactly the canonical kinetic term for Yang-Mills gauge field in curved

space-time.

In the context of SU(N) Yang-Mills gauge theory, we need to introduce a mul-

tiplet of N Dirac spinors:

Ψ =


ψ1

...

ψN

 , (7.10)

that transforms in the fundamental representation of SU(N) gauge group. Each

component ψi transforms in the fundamental representation of SO(2, 3) gauge group,

and so, infinitesimally, under a full gauge transformation:

(δεΨ)i = i(εΨ)i = iεI(TI)ijψj =
i

2
εIAB(TI)ijMABψi . (7.11)

The i-th component of the total covariant can be decomposed in three parts, Lorentz,

l-dependent AdS part, and SU(N) part:

(DσΨ)i = ∂σψi − igΩσψi = ∂σψi −
i

2
ωABσ MABψi − igAIσ(TI)ijψj

= DL
σψi +

i

2l
eaσγaψi − igAIσ(TI)ijψj . (7.12)
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The undeformed fermionic action is

SΨ =
i

12

∫
d4x εµνρσ

(
Ψ̄DµφDνφDρφDσΨ−DσΨ̄DµφDνφDρφΨ

)
, (7.13)

and, after gauge fixing, it reduces to

SΨ|g.f. = i

∫
d4x e

(
Ψ̄eσsγ

sDL
σΨ− 2

l
Ψ̄Ψ + gΨ̄eσsγ

sAIσTIΨ

)
, (7.14)

We can also include additional SO(2, 3) × SU(N) invariant mass-like terms Sm,i

(i = 1, 2, 3) in the total action:

Sm,1 =
ic1

2l

(
m− 2

l

)∫
d4x εµνρσ Ψ̄DµφDνφDρφDσφφΨ + c.c.

Sm,2 =
ic2

2l

(
m− 2

l

)∫
d4x εµνρσ Ψ̄DµφDνφDρφφDσφΨ + c.c.

Sm,3 =
ic3

l

(
m− 2

l

)∫
d4x εµνρσ Ψ̄DµφDνφφDρφDσφΨ . (7.15)

For the free dimensionless parameters c1, c2 and c3 will again set c1 = −c2 = c3 =

1/72. In that case, after the symmetry breaking, the sum of the three mass-like

terms (7.15), denoted by Sm, reduces to

Sm|g.f. = −
(
m− 2

l

)∫
d4x e Ψ̄Ψ . (7.16)

Adding this to (7.14), the 2/l terms exactly cancel. In particular. We thus have a

complete and consistent classical (undeformed ) model of SO(2, 3)×SU(N) gauge-

invariant Yang-Mills theory.

7.2 NC-deformed Yang-Mills theory

The NC Yang-Mills action invariant under NC-deformed SO(2, 3)∗ × SU(N)∗

gauge transformations is obtained by applying the procedure of ?-product deforma-

tion to the commutative actions SΨ, Sm, and SA, given by Eqs. (7.3), (7.13) and

(7.15), respectively. For example, pure Yang-Mills action SA becomes:

S?A = − 1

16l
Tr

∫
d4x εµνρσ

{
f̂ ? F̂µν ?Dρφ̂ ?Dσφ̂ ? φ̂

+
i

6
f̂ ? f̂ ?Dµφ̂ ?Dνφ̂ ?Dρφ̂ ?Dσφ̂ ? φ̂

}
+ c.c. (7.17)
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We proceed by employing the SW map to perturbatively expanded the NC action

in powers of θαβ. SW map insures the invariance of this expansion under ordinary

SO(2, 3)× SU(N) gauge transformations, order-by-order.

After the symmetry breaking and elimination of the auxiliary field f by using

its equations of motion - if we consider only terms linear in θαβ, to eliminate the

f -field, one only needs to insert the undeformed EoMs (7.8) in the first order NC

correction (as in the case of U(1) gauge field) - it becomes:

S
(1)
A |g.f. = −θ

αβ

16

∫
d4x e dIJK gµρgνσ

(
F IαβFJµνFKρσ − 4F IαµFJβνFKρσ

)
. (7.18)

This is the first order NC correction to the pure Yang-Mills action in curved

space-time. It describes interaction of gauge-bosons with gravity that arises due to

space-time noncommutativity. Note that this result agrees with the one obtained in,

where the method of NC deformation by minimal substitution is employed. After

gauge fixing the total linear NC correction to the spinor part of Yang-Mills theory

becomes:

(
S

(1)
Ψ + S(1)

m

)
|g.f. = θαβ

∫
d4x e Ψ̄

[
− 1

8
Rab
αµe

µ
aγbDLβ −

i

32
Rab
αβε

d
abc e

σ
dγ

cγ5DLσ

+
1

16
Rab
αβe

σ
b γaDLσ −

i

16
Rbc
αµe

µ
aε
a
bcmγ

mγ5DLβ −
i

24
Rab
αµε

d
abc e

c
β(eµde

σ
s − eµs eσd)γsγ5DLσ

− i

8l
T aαβe

σ
aDLσ +

i

8l
T aαµe

µ
aDLβ +

1

16l
T aαβe

µ
aσ

σ
µ DLσ +

1

8l
T aαµe

µ
bσ

b
a DLβ

− 1

12l
T aαµε

cd
ab ebβe

µ
c e
σ
dγ

5DLσ +
7i

48l2
ε d
abc e

a
αe

b
βe

σ
dγ

cγ5DLσ −
1

4l
σ σ
α DLβDσ

− 1

4
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )γbDLβDLσ −

i

8
ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

cdrseµc e
ν
de
σ
sγrγ5DLσ

+
i

12
(DL

αe
a
µ)(DL

β e
b
ν)ε

cds
b eµc e

ν
de
σ
s γaγ5DLσ −

1

12l
ecα(DL

β e
b
ν)ε

ds
bc eνde

σ
sγ5DLσ

− 1

8l
(DL

αe
a
µ)(eµae

σ
b − eσae

µ
b )ecβσ

b
cDLσ −

1

8l
(DL

αe
a
µ)eµbσ

b
a Dβ +

3

96l
Rab
αβσab

+
1

16l
Rab
αµe

µ
ae
c
βσbc −

1

16l
Rab
αµeβae

µ
cσ

c
b −

19

288l2
T aαβγa +

19

144l2
T aαµe

µ
aγβ

+
1

16l2
T aαµeβaγ

µ − 19

144l2
(DL

αe
a
µ)eµaγβ +

1

16l2
(DL

αe
a
µ)eβaγ

µ − 1

12l3
σαβ

+
3i

8
FαβeσsγsDLσ −

i

4
FασeσsγsDLβ +

1

8l
Fαβ

]
Ψ + c.c. (7.19)

The SO(1, 3)×SU(N) covariant derivative is DLσΨ = (DL
σ − igAIσTI)Ψ. This action

interaction of fermions with gravity that emerge due to space-time noncommutati-

vity. Evidently, some of them pertain even in flat space-time and this unexpected
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residual effect of space-time noncommutativity has non-trivial consequences for the

dynamics of quarks and gluons. The new terms, linear in θαβ, modify the standard

theory of strong interaction. Note that some of them survive the WI contraction.

From curved space-time NC actions (7.18) and (7.19) we can derive the NC-

deformed action for SUc(3) Yang-Mills theory in Minkowski space:

S?flat =

∫
d4x

{
iΨ̄(q)/̃DΨ(q) − 1

4
gµρgνσF IµνF Iρσ

+θαβ

[
− 1

2l
Ψ̄(q)σ σ

α D̃βD̃σΨ(q) +
7i

24l2
ε ρσ
αβ Ψ̄(q)γργ5D̃σΨ(q) +

3i

4
Ψ̄(q)Fαβ /̃DΨ(q)

− i

2
Ψ̄(q)FασγσD̃βΨ(q) − 1

6l3
Ψ̄(q)σαβΨ(q) +

1

4l
Ψ̄(q)FαβΨ(q)

]

− θαβ

16
dIJK gµρgνσ

(
F IαβFJµνFKρσ − 4F IαµFJβνFKρσ

)}
, (7.20)

with Ψ(q) being the quark color triplet, and we imply the summation over all six

flavours (q = u, d, s, c, t, b). The SUc(3) covariant derivative is given by:

(D̃σΨ(q))i = ∂σψ
(q)
i −

i

2
gsA

I
σ(λI)ijψ

(q)
j , (7.21)

with Gell-Mann matrices 1
2
λI as generators of SUc(3) gauge group; index I goes

from 1 to 8. We have a gluon field strength F Iµν = ∂µA
I
ν − ∂νAIµ + gsf

IJKAJAK ,

with coupling gs. From the experimental point of view, it is significant that the first

non-vanishing NC correction is linear in θαβ since this could lead to some potenti-

ally observable effects. Following this approach, it is possible to progress towards

generalizing the NC Standard Model. After quantization, the renormalizability of

the model can be investigated, as in [118], especially the influence of noncommuta-

tivity on asymptotic freedom. This result sets a basis for further investigation of

the effects of space-time noncommutativity on strong interaction and, by extension,

the dynamics of the early Universe.

80



8 Canonical deformation of N = 2 AdS4 SUGRA

The content of this section is originally presented in [119]

It is well known that one can define a consistent theory of extended N = 2

AdS SUGRA in D = 4. Besides the standard gravitational part (with negative

cosmological constant), this SUGRA model involves a U(1) gauge field and a pair

independent Majorana vector-spinors that can be mixed to form a pair of Dirac

vector-spinors (charged spin-3/2 gravitini). The action for N = 2 AdS4 SUGRA

is invariant under SO(1, 3) × U(1) gauge transformations, and under local SUSY.

We will present a geometric action that involves two “inhomogeneous” parts: an

orthosymplectic OSp(4|2) gauge-invariant action of the Yang-Mills type, and a sup-

plementary action invariant under purely bosonic SO(2, 3)×U(1) ∼ Sp(4)×SO(2)

sector of OSp(4|2), that needs to be added for consistency. This action reduces to

N = 2 AdS4 SUGRA after the gauge fixing. We show that N = 2 AdS4 SUGRA

has non-vanishing linear NC correction in the physical gauge, originating from the

additional, purely bosonic term. For comparison, simple N = 1 Poinacaré SU-

GRA can be obtained in the same manner from an OSp(4|1) gauge-invariant action

(without introducing any additional terms). The first non-vanishing NC correction

is quadratic in the deformation parameter θµν , and therefore exceedingly difficult

to calculate. Under WI contraction, N = 2 AdS superalgebra reduces to N = 2

Poincaré superalgebra, and it is not quite clear whether this relation holds after

canonical NC deformation. We present the linear NC correction to N = 2 AdS4

SUGRA explicitly, discuss its low-energy limit, and what remains of it after WI

contraction.

Thus far, we still lack direct physical evidence of SUSY, at least in its simplest

form. However, its beneficial influence on high-energy physics (it improves renorma-

lizability in QFT and a provides a natural solution to the hierarchy problem), along

with its mathematical consistency and unification power (unification of gravity and

the Standard Model within SUGRA, and ultimate unification scheme such as Super-

string theory), motivate us to seriously consider SUSY as a part of our description

of nature. Since the original work of Freedman, van Nieuwenhuizen and Ferrara

[120, 121], and Deser and Zumino [122], the theory of supergravity has become a

well-developed research field. SUGRA provides a unification of gravity with other

fields by imposing gauge principle on SUSY, the associated gauge field being the

spin-3/2 gravitino field described by a Majorana vector-spinor. It was demonstra-

ted in [123, 124] that one can define a consistent theory of extended N = 2 AdS4

SUGRA with complex (U(1)-charged) gravitino field. We propose a more geometric
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way of obtaining N = 2 AdS4 SUGRA action and perform its NC deformation.

Our results amount to a supersymmetric extension of the theory of NC gravity

based on the NC-deformed AdS gauge group SO(2, 3) developed in [57–60]. NC

SUGRA can be established by gauging an appropriate supergroup [28, 29, 125–

131] and performing canonical deformation. Since GR can be obtained by gauging

AdS group SO(2, 3), orthosymplectic supergroup OSp(4|1) appears as a natural

choice for pure N = 1 Poincaré SUGRA. Bosonic sector of osp(4|1) superalgebra

- symplectic algebra sp(4) - is isomorphic to AdS algebra so(2, 3) that reduces to

Poincaré algebra under WI contraction [132]. The subject of NC SUGRA has been

thoroughly treated in [97, 98]. Classical action for OSp(4|1) SUGRA presented in

[98] is manifestly invariant under OSp(4|1) gauge transformations, and we will use

it as a starting point. However, to obtain explicite NC correction of this action is

exceedingly difficult, because the first non-vanishing NC correction is quadratic in

θµν . Taking a lesson from [105, 108, 109] that iby inlcuding Dirac spinors coupled

to U(1) gauge field (much simpler) linear NC correction emerges, we will make a

transition to OSp(4|2) SUGRA that involves a pair of Majorana spinors that can

be mixed into a pair of gravitini charged under U(1). We present an action that

consists of two “inhomogeneous” geometric parts: an orthosymplectic, OSp(4|2)

gauge-invariant action of the Yang-Mills type, and a supplementary action that is

invariant under bosonic SO(2, 3)×U(1) sector of OSp(4|2), that has to be included

in order to obtain complete N = 2 AdS4 SUGRA at the classical level; a non-trivial

linear NC correction to N = 2 AdS4 SUGRA comes from this additional bosonic

term, after deformation.

We consider two classical SUGRA models based on orthosymplectic OSp(4|N)

gauge group: the simple N = 1 AdS4 SUGRA, describing pure supergravity with

the negative cosmological constant, and the extended N = 2 AdS4 SUGRA. We put

our attentions on the latter (N = 2), since the former (N = 1) has been treated

thoroughly in [98], including its NC deformation; we discuss it just for comparison.

Significant differences of the two models in question are manifested already at the

level of their classical actions, and this reflects drastically on the structure of their

NC corrections after deformation.
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8.1 OSp(4|2) SUGRA

Orthosymplectic group OSp(4|2) has 19 generators, and they are of two sorts -

bosonic and fermionic. Ten bosonic generators M̂AB = −M̂BA (A,B = 0, 1, 2, 3, 5)

form a basis of AdS Lie algebra so(2, 3) (symmetry algebra of AdS4),

[M̂AB, M̂CD] = i(ηADM̂BC + ηBCM̂AD − ηACM̂BD − ηBDM̂AC) , (8.1)

where ηAB is flat 5D metric with signature (+,−,−,−,+). By splitting this set

of generators into six M̂ab AdS rotation generators (a, b = 0, 1, 2, 3) and four AdS

translation generators M̂a5, we can recast so(2, 3) algebra in a more explicit form:

[M̂a5, M̂b5] = −iM̂ab ,

[M̂ab, M̂c5] = i(ηbcM̂a5 − ηacM̂b5) ,

[M̂ab, M̂cd] = i(ηadM̂bc + ηbcM̂ad − ηacM̂bd − ηbdM̂ac) . (8.2)

If we introduce a new set of generators (M̂ab, P̂a) defined by M̂ab := M̂ab and

P̂a := l−1M̂a5 = αM̂a5, where l is a length scale related to AdS radius and α = l−1

(we will use both in the following formulae), the algebra (8.2) transforms into:

[P̂a, P̂b] = −iα2M̂ab ,

[M̂ab, P̂c] = i(ηbcP̂a − ηacP̂b) ,

[M̂ab,M̂cd] = i(ηadM̂bc + ηbcM̂ad − ηacM̂bd − ηbdM̂ac) . (8.3)

In the limit α → 0 (or l → ∞), AdS algebra reduces to Poincaré algebra, in

particular, we obtain [P̂a, P̂b] = 0 with all other commutators left unchanged. This is

a famous example of the Wigner-Inönü (WI) contraction, the contraction parameter

being α (or l). This Lie-algebra contraction (or deformation) can be extended to AdS

superalgebra, and we will be interested, later on, in its effect on the NC correction

of N = 2 AdS4 SUGRA.

A representation of the AdS sector of osp(4|1) superalgebra is obtained by using

5D gamma matrices ΓA satisfying Clifford algebra {ΓA,ΓB} = 2ηAB; the AdS gene-

rators M̂AB are represented by 6 × 6 super-matrices, that reduce to 4 × 4 matrices

MAB = i
4
[ΓA,ΓB] in the AdS subspace, see Appendix A. One choice of Γ-matrices is

ΓA = (iγaγ5, γ5), where γa are the usual 4D γ-matrices. In this representation, the

components of MAB are given by Mab = i
4
[γa, γb] = 1

2
σab and Ma5 = −1

2
γa.
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The ten AdS bosonic generators MAB are accompanied by eight independent

fermionic generators Q̂I
α, with spinor index α = 1, 2, 3, 4 and SO(2) index I = 1, 2,

comprising a pair of Majorana spinors, and one additional bosonic generator T̂

related to SO(2) ∼ U(1) extension. Together, they satisfy osp(4|2) superalgebra

(for consistency, fermionic generators Q̂I
α have to transform as components of an

AdS Majorana spinor):

[M̂AB, M̂CD] = i(ηADM̂BC + ηBCM̂AD − ηACM̂BD − ηBDM̂AC) ,

[M̂AB, Q̂
I
α] = −(MAB) β

α Q̂
I
β ,

{Q̂I
α, Q̂

J
β} = −2δIJ(MABC−1)αβM̂AB − iεIJCαβT̂ ,

[T̂ , Q̂I
α] = −iεIJQ̂I

α , (8.4)

with antisymmetric tensor εIJ , ε12 = 1. C−1 is the inverse of the charge-conjugation

matrix (spinor metric) for which we use the following representation given in terms of

Pauli matrices: C = −σ3⊗ iσ2, and Cαβ = −Cβα. Numerically we have C−1 = −C,

but the index structure of the two is different since Cαγ(C
−1)γβ = δβα.

More visually,

C =


0 −1

1 0
02×2

02×2

0 1

−1 0

 . (8.5)

An explicit matrix representation of osp(4|2) superalgebra is given in Appendix A.

By introducing a new set of generators {M̂ab := M̂ab, P̂a := αM̂a5, Q̂Iα :=
√
αQ̂I

α, T̂ := αT̂} we can recast the osp(4|2) superalgebra (8.4) into the following

form:

[P̂a, P̂b] = −iα2M̂ab ,

[M̂ab, P̂c] = i(ηbcP̂a − ηacP̂b) ,

[M̂ab,M̂cd] = i(ηadM̂bc + ηbcM̂ad − ηacM̂bd − ηbdM̂ac) ,

[P̂a, Q̂Iα] = −α(Ma5) β
α Q̂Iβ ,

[M̂ab, Q̂Iα] = −(Mab)
β
α Q̂Iβ ,

[T̂ , Q̂Iα] = −iεIJQ̂Iα ,

{Q̂Iα, Q̂Jβ} = −2δIJα(MabC−1)αβM̂ab − 2δIJ(Ma5C−1)αβP̂a − iεIJCαβT̂ . (8.6)

Under WI contraction α→ 0 it reduces to N = 2 Poincaré superalgebra.
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Orthosymplectic supergroupOSp(2n|m) (symplectic sector is always even-dimensional)

consists of those super-matrices U that preserve the graded metric

G =

(
Σαβ 02n×m

0m×2n ∆ij

)
, (8.7)

with some real 2n×2n matrix Σαβ = −Σβα, and some real m×m matrix ∆ij = ∆ji.

Considering only infinitesimal transformations U = 1 + εM , generated by some

osp(2n|m)-valued supermatrix

M =

(
A B

C D

)
, (8.8)

(bosonic blocks A2n×2n and Dm×m have ordinary commuting entries, and fermio-

nic blocks B2n×m and Cm×2n have Grassmann-valued entries), the defining relation

becomes

MSTG+GM = 0 . (8.9)

Super-transpose, super-hermitian adjoint and super-trace are defined by imposing

the standard rules (MN)ST = NSTMST , (MN)† = N †M † and STr(MN) =

STr(NM),

MST =

(
AT CT

−BT DT

)
, M † =

(
A† C†

B† D†

)
, STr(M) = Tr(A)− Tr(D) .

(8.10)

Now, the key observation is that a pair of Majorana fields χIµ (describing a

pair of neutral spin-3/2 gravitini) constitute the fermionic sector of the osp(4|2)

connection super-matrix Ωµ. We can expand this super-connection over the basis

{M̂ab, M̂a5, Q̂
I
α, T̂} with the corresponding gauge fields {ω ab

µ , ω a5
µ , χ̄Iµ, Aµ}, as

Ωµ =
1

2
ω ab
µ M̂ab + ω a5

µ M̂a5 + (χ̄Iµ)αQ̂I
α + AµT̂ =

 ωµ χ1
µ χ2

µ

χ̄1
µ

χ̄2
µ

0 iAµ

−iAµ 0

 ,

(8.11)

where we have so(2, 3) gauge field ωµ = 1
2
ω AB
µ MAB = 1

2
ω ab
µ Mab + ω a5

µ Ma5 =
1
4
ω ab
µ σab − 1

2
ω a5
µ γa, a pair of Majorana vector-spinors χIµ with components (χIµ)α,

and their Dirac-adjoints χ̄Iµ = −(χIµ)TC−1 with components (χ̄Iµ)α = −(χIµ)β(C−1)βα

(α = 1, 2, 3, 4).
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Equivalently, we can expand Ωµ over the re-scaled basis {M̂ab, P̂a, Q̂Iα, T̂ }, but

with a different set of gauge fields {ω ab
µ , eaµ := 1

α
ω a5
µ , ψ̄Iµ := 1√

α
χ̄Iµ,Aµ := 1

α
Aµ}, as

Ωµ =
1

2
ω ab
µ M̂ab + 1

α
ω a5
µ P̂a + 1√

α
χ̄αµQ̂α =

 ωµ
√
αψ1

µ

√
αψ2

µ√
αψ̄1

µ√
αψ̄2

µ

0 iαAµ
−iαAµ 0

 ,

(8.12)

where we again have so(2, 3) gauge field ωµ = 1
4
ω ab
µ σab − α

2
eaµγa, two independent

Majorana spinors ψIµ, and (dimensionless) U(1) vector potential Aµ. We will use

this particular representation because it makes WI contraction more transparent.

The two Majorana spinors, ψ1
µ and ψ2

µ, can be combined into an SO(2) doublet,

Ψµ =

(
ψ1
µ

ψ2
µ

)
. (8.13)

It can be readily confirmed that gauge supermatrix (8.12) satisfies the defining re-

lation for the elements of osp(4|2) superalgebra (C is the charge-conjugation matrix

(8.5)),

ΩST
µ

 C 0 0

0

0

1 0

0 1

+

 C 0 0

0

0

1 0

0 1

Ωµ = 0 . (8.14)

By generalization, we introduce Osp(4|2) field strength Fµν associated with the

super-connection Ωµ,

Fµν = ∂µΩν − ∂νΩµ − i[Ωµ,Ων ]

=

 F̃µν
√
α(Dµψ1

ν −Dνψ1
µ)
√
α(Dµψ2

ν −Dνψ2
µ)

√
α(Dµψ̄1

ν −Dνψ̄1
µ)

√
α(Dµψ̄2

ν −Dνψ̄2
µ)

0 iαF̃µν
−iαF̃µν 0

 ,

(8.15)

with extended AdS field strength F̃µν (summation over I = 1, 2 is implied)

F̃µν = Fµν − iα(ψIµψ̄
I
ν − ψIνψ̄Iµ) =

1

4
R̃ mn
µν σmn −

α

2
T̃ m
µν γm , (8.16)
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involving extended curvature tensor R̃ mn
µν and extended torsion T̃ m

µν , given by

R̃ mn
µν := R mn

µν − α2(emµ e
n
ν − enµemν )− iα(Ψ̄µσ

mnΨν) , (8.17)

T̃ m
µν := T m

µν + i(Ψ̄µγ
mΨν) . (8.18)

Electromagnetic field strength is also modified by a bilinear current term J(e),

F̃µν := Fµν − J(e)µν = ∂µAν − ∂νAµ − Ψ̄µiσ
2Ψν . (8.19)

Note that Pauli matrix iσ2 mixes the two Majorana components in J(e).

In the fermionic sector of Fµν we introduced

Dµψ1
ν := Dµψ

1
ν + αAµψ2

ν , (8.20)

Dµψ2
ν := Dµψ

2
ν − αAµψ1

ν , (8.21)

where Dµ stands for SO(2, 3) covariant derivative. The fact that Majorana spinors

ψ1
µ and ψ2

ν are not charged is reflected in the manner in which they couple to the

gauge field Aµ. Using them, we can define two charged Dirac vector-spinors ψ±µ =

ψ1
µ±iψ2

µ, related to each other by C-conjugation, ψ−µ = ψc+µ = Cψ̄+T
µ , that do couple

to Aµ in the right way. With Pauli matrix iσ2 we can unify (8.20) and (8.21) as

DµΨν = (Dµ + αAµiσ2)Ψν =

(
DL
µ +

iα

2
γµ + αAµiσ2

)
Ψν . (8.22)

Now consider an action, similar to the one defined in (4.13) for pure gravity, but now

appropriately generalized to be invariant under extended OSp(4|2) gauge transfor-

mations,

S42 = STr

∫
d4x εµνρσFµν(aI6×6 + bΦ2/l2)FρσΦ . (8.23)

The action is real and we introduced a pair of free parameters, a and b, that will by

fixed later. The first part of (8.23) is the quadratic Yang-Mills type of action, and

the second part (b-term) is necessary for having local SUSY after gauge fixing.

Generalized auxiliary field Φ is given by a supermatrix (we have two Majorana

spinors λ1 and λ2, and scalar fields π, m and σ), see also [98, 126–128],

Φ =


1
4
π + iφaγaγ5 + φ5γ5 λ1 λ2

−λ̄1

−λ̄2

π − σ m

m σ

 . (8.24)
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In the physical gauge λ1 = λ2 = π = σ = m = φa = 0, and φ5 = l, yielding

Φ|g.f. =

 lγ5 0 0

0

0

0 0

0 0

 . (8.25)

Field strength Fµν and the auxiliary field transform in the adjoint representation

of OSp(4|2), with infinitesimal variations

δεFµν = i[ε,Fµν ] , δεΦ = i[ε,Φ] , (8.26)

for some osp(4|2)-valued gauge parameter ε given by a supermatrix

ε =


1
2
εABMAB ξ1 ξ2

ξ̄1

ξ̄2

0 iα

−iα 0

 . (8.27)

From (8.26) the invariance of the action (8.23) follows immediately.

After the gauge fixing, field Φ2/l2 that appears in the second term of (8.23)

becomes a projector that reduces any osp(4|2) supermatrix to its so(2, 3) sector,

and the classical OSp(4|2) gauge-invariant action (8.23) reduces to

S42|g.f. =

∫
d4x εµνρσ

(
(a+ b)il

4
R̃ mn
µν R̃ rs

ρσ εmnrs − 4al(DµΨ̄νγ5DρΨσ)

)
. (8.28)

The term that is quadratic in the Lorentz SO(1, 3) covariant derivative DL
µ can be

transformed by partial integration,∫
d4x εµνρσ(DL

µ Ψ̄νγ5D
L
ρ Ψσ) =

1

16

∫
d4x εµνρσR mn

µν (Ψ̄ρσ
rsΨσ)εmnrs , (8.29)

where we invoked the commutator of two Lorentz covariant derivatives

i[DL
µ , D

L
ν ]Ψσ = 1

4
R mn
µν σmnΨσ . (8.30)

Term of the same type appears in the first part of the action (8.28). These two

contributions have to cancel each other in order to have SUSY, and this implies

the constraint b = −a/2. Moreover, to obtain the correct normalization of the
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Einstein-Hilbert term, we set a = il/32πGN = il/4κ2, yielding

S42|g.f. = − 1

2κ2

∫
d4x

(
e
(
R(e, ω)− 6α2

)
+

1

16α2
R mn
µν R rs

ρσ εµνρσεmnrs (8.31)

+ εµνρσ
(

2Ψ̄µγ5γν(Dρ + αAρiσ2)Ψσ + iFµν(Ψ̄ργ5iσ
2Ψσ)− i

2
(Ψ̄µiσ

2Ψν)(Ψ̄ργ5iσ
2Ψσ)

))
.

However, this is not the full N = 2 AdS4 SUGRA action. The gravity part is

correct (we can omit the topological Gauss-Bonet term) and we also get the correct

kinetic term for the gravitino doublet. There are also two bilinear source terms,

electric and magnetic,

J(e)µν := Ψ̄µiσ
2Ψν , J µν

(m) := i
2e
εµνρσ(Ψ̄ργ5iσ

2Ψσ) . (8.32)

But we are missing the contribution from the SO(2) part of the bosonic sector,

in particular, the kinetic term for U(1) gauge field Aµ. The reason for this defect

can be traced back to the specific form that the auxiliary field assumes in the

physical gauge Φ|g.f. (8.25); it completely annihilates the SO(2) sector of any osp(4|2)

supermatrix. To restore the missing terms, we must introduce an additional action,

supplementing (8.23). In [109], following the approach of [110], we defined a classical

action invariant under SO(2, 3) × U(1) gauge transformations (∼bosonic sector of

OSp(4|2)) that involves an additional auxiliary field f = 1
2
fABMAB. Its role is to

produce the canonical kinetic term for U(1) gauge field in the absence of Hodge

dual operator (this is of course the crucial point, we are trying to construct a purely

geometrical action that does not involve the metric tensor gµν explicitly). This

auxiliary field f is a U(1)-neutral 0-form that takes values in so(2, 3) algebra, and

it transforms in the adjoint representation of SO(2, 3).

The way to proceed is to employ this auxiliary field method to include the

modified U(1) field strength F̃µν defined in (8.19). However, there seems to be

no way to construct an OSp(4|2) gauge invariant action that is compatible with this

procedure. Therefore, we will use an action, analogues to the one in [109], invariant

under purely bosonic SO(2, 3)×U(1) sector of OSp(4|2), involving the bosonic field

strength f̃µν := F̃µν + κ−1F̃µν = F̃µν + κ−1(Fµν − J(e)µν) of SO(2, 3) × U(1). The

action is given by

SA = Tr

∫
d4x εµνρσ

(
c f f̃µνDρφDσφφ+ d f 2DµφDνφDρφDσφφ

)
+ c.c. (8.33)
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Note that, by doing this, we lose the complete OSp(4|2) gauge invariance of the

undeformed action before the symmetry breaking. Nevertheless, we will obtain the

correct action for N = 2 SdS4 SUGRA in the physical gauge, and this is the only

requirement that has to be satisfied in order to perform NC deformation.

After calculating traces (see Appendix B) we obtain

SA =

∫
d4x εµνρσ

(
ic

2
fABF CD

µν (Dρφ)E(Dσφ)FφG(ηFGεABCDE + 2ηADεBCEFG)

+ cκ−1fABF̃µν(Dρφ)E(Dσφ)FφGεABEFG

− id

2
fABfAB(Dµφ)E(Dνφ)F (Dρφ)G(Dσφ)HφRεEFGHR

)
+ c.c. (8.34)

We conclude that parameter c must be real, otherwise the second term, involving

F̃µν , would be purely imaginary and would not contribute (and this term is the

one that we need to include). Therefore, assuming real c, the first term (involving

gravitational quantities like curvature tensor and torsion) becomes purely imaginary

and vanishes after adding its complex conjugate (c.c.). Also, d must be purely

imaginary for the procedure to work.

Gauge fixing yields

SA|g.f. =

∫
d4x e

(
− 8lcκ−1fabF̃µνeaµebν + 24ild fABfAB

)
. (8.35)

By varying this gauge fixed action over fab and fa5 independently, we obtain alge-

braic equations of motion (EoMs) for the components fab and fa5 of the auxiliary

field f , respectfully, and they are given by

fab = − ic

6κd
F̃µνeµaeνb , fa5 = 0 . (8.36)

Inserting them back into the action (8.35), we obtain

SA|g.f. =
2ilc2

3κ2d

∫
d4x e F̃2 . (8.37)

To get the consistent normalization we set the prefactor to (8κ2)−1, yielding another

constraint 16ilc2 = 3d for the parameters c and d. To make the connection with the

results of [109], we take c = 1/32l and d = i/192l, implying

fab = −κ−1F̃µνeµaeνb . (8.38)
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Therefore, after imposing the physical gauge, the original bosonic action (8.33),

invariant under SO(2, 3)× U(1) gauge transformations, reduces to SO(1, 3)× U(1)

gauge-invariant action containing the canonical kinetic term for U(1) gauge field Aµ
in curved space-time, and two additional terms involving gravitino current J(e)µν =

Ψ̄µiσ
2Ψν ,

SA|g.f. =
1

4κ2

∫
d4x e F̃2 =

1

4κ2

∫
d4x e

(
F2 − 2F · J(e) + J 2

(e)

)
. (8.39)

This is exactly the piece that was missing in (8.31). With this result in hand,

we have the complete classical N = 2 AdS4 SUGRA action [28, 29],

(S42 + SA)|g.f. = − 1

2κ2

∫
d4x e

(
R− 6α2 + 2e−1εµνρσΨ̄µγ5γν(Dρ + αAρiσ2)Ψσ

+ 2F · J(m) − J(e) · J(m) −
1

4

(
F2 + J 2

(e) − 2F · J(e)

))
. (8.40)

The most important characteristics of this SUGRA model are the negative cosmolo-

gical constant Λ = −3α2 = −3/l2, and the fact that U(1) coupling strength is equal

to the WI contraction parameter α. Under WI contraction (α→ 0) the N = 2 AdS4

SUGRA action consistently reduces to the N = 2 Poincaré SUGRA action.

In terms of charged Dirac vector-spinors ψ±µ = ψ1
µ ± iψ2

µ (actually, we can use

only one of them since they are related to each other by C-conjugation) the action

becomes

(S42 + SA)|g.f. = − 1

2κ2

∫
d4x e

(
R(e, ω)− 6α2 + 2e−1εµνρσψ̄+

µ γ5γν(Dρ − iαAρ)ψ+
σ

+ 2F · J +
(m) − J

+
(e) · J

+
(m) −

1

4

(
F2 − 2F · J +

(e) + (J +
(e))

2
))

,

(8.41)

with J +
(e) = 1

2i
(ψ̄+

µ ψ
+
ν − ψ̄+

ν ψ
+
µ ) and J +

(m) = 1
4e

(ψ̄+
µ γ5ψ

+
ν − ψ̄+

ν γ5ψ
+
µ ).

For later purpose, we note that action (8.41) contains a mass-like term for charged

gravitino (we absorb the parameter κ−1 into ψ+
µ to obtain the canonical dimensions),

iα

∫
d4x e ψ̄+

µ σ
µνψ+

ν , (8.42)

with mass-like parameter equal to the WI contraction parameter.
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8.2 OSp(4|1) SUGRA

The OSp(4|1) supergroup has 14 generators; ten bosonic AdS generators M̂AB,

and four fermionic generators, Q̂α, comprising a single Majorana spinor (describing

a single neutral gravitino). Supermatrix for the OSp(4|1) gauge field Ωµ is given by

Ωµ =

(
ωµ

√
αψµ√

αψ̄µ 0

)
. (8.43)

Consider the following action invariant under OSp(4|1) gauge transformations [97],

S41 =
il

32πGN

STr

∫
d4x εµνρσFµν(I5×5 − 1

2l2
Φ2)FρσΦ . (8.44)

Auxiliary field is

Φ =

(
1
4
π + iφaγaγ5 + φ5γ5 λ

−λ̄ π

)
g.f.
=

(
lγ5 0

0 0

)
. (8.45)

In the physical gauge, the OSp(4|1) gauge-invariant action (8.44) exactly reduces to

N = 1 AdS4 SUGRA action [28, 29, 98],

S41|g.f. = − 1

2κ2

∫
d4x

(
e
(
R(e, ω)− 6/l2

)
+ 2εµνρσ(ψ̄µγ5γνDρψσ)

)
(8.46)

= − 1

2κ2

∫
d4x e

(
R(e, ω)− 6α2 + 2e−1εµνρσ(ψ̄µγ5γνD

L
ρψσ)− 2iα(ψ̄µσ

µνψν)

)
.

It contains Einstein-Hilbert term with the negative cosmological constant Λ =

−3/l2, Rarita-Schwinger kinetic term for neutral gravitino, and a mass-like gra-

vitino term that is needed in the presence of the cosmological constant to insure

the invariance under local SUSY (gravitino actually remains massless). Topological

Gauss-Bonet term is omitted. Cosmological constant and the mass-like term vanish

under WI contraction, yielding minimal N = 1 Poincaré SUGRA. Note that we do

not need additional action terms in (8.44) to obtain a consistent classical theory.

It is shown in [98] that linear (in θµν) NC correction to (8.44) vanishes, and

that one has to calculate the second order NC correction in order to see NC effects,

which is exceedingly difficult. In the following section, we use the Seiberg-Witten

approach to NC gauge field theories, to calculate linear NC correction to N = 2

AdS4 SUGRA, and conclude that it is not equal to zero. The non-vanishing part

comes from the additional bosonic action, SA.

92



8.3 NC deformation

Canonical deformation of the orthoymplectic action (8.23) is obtained by repla-

cing ordinary commutative field multiplication with Moyal ?-product, yielding an

NC action invariant under NC-deformed OSp(4|2)? gauge transformations,

S?42 =
il

32πGN

STr

∫
d4x εµνρσ

(
F̂µν ? F̂ρσ ? Φ̂− 1

2l2
F̂µν ? Φ̂ ? Φ̂ ? F̂ρσ ? Φ̂

)
. (8.47)

Likewise, we have canonically deformed version of the bosonic action (8.33) with

c = 1/32l and d = i/192l,

S?A =
1

32l
Tr

∫
d4x εµνρσ

(
f̂ ?

ˆ̃
fµν ? Dρφ̂ ? Dσφ̂ ? φ̂

+
i

6
f̂ ? f̂ ? Dµφ̂ ? Dνφ̂ ? Dρφ̂ ? Dσφ̂ ? φ̂

)
+ c.c. (8.48)

Field strength F̂µν appearing in (8.47) is defined in terms of OSp(4, 2)? gauge po-

tential Ω̂µ as

F̂µν = ∂µΩ̂ν − ∂νΩ̂µ − i[Ω̂µ
?, Ω̂ν ] . (8.49)

It transforms in the adjoint representation of OSp(4, 2)? supergroup as well as the

NC auxiliary field Φ̂,

δ?ε F̂µν = i[Λ̂ε
?, F̂µν ] , δ?ε Φ̂ = i[Λ̂ε

?, Φ̂] . (8.50)

We proceed by expanding the OSp(4|2)∗ gauge-invariant NC action (8.47) in powers

of the deformation parameter θµν via SW map. By construction, SW map ensures

invariance of the expansion under ordinary OSp(4|2) gauge transformations, order-

by-order.

Now we present some relevant steps in the expansion procedure of the NC action

(8.47). Our goal is to calculate and analyze linear NC correction to the classical

action (8.23). According to the SW map, the first order NC corrections of the

auxiliary field Φ and the OSp(4|2) field strength Fµν are given by

Φ̂(1) = −1

4
θρσ{Ωρ, (∂σ + D̂σ)Φ} , (8.51)

F̂(1)
µν = −1

4
θρσ{Ωρ, (∂σ + D̂σ)Fµν}+

1

2
θρσ{Fρµ,Fσν} , (8.52)

where D̂µ stands for the OSp(4|2) covariant derivative (associated to Ωµ).
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Successive application of this rule gives us the first order NC correction to the

classical action (8.23):

S
(1)
42 =

ilθλτ

32πGN

STr

∫
d4x εµνρσ

(
− 1

4
{Fλτ ,FµνFρσ}Φ +

i

2
D̂λFµνD̂τFρσΦ (8.53)

+
1

2
{Fλµ,Fτν}FρσΦ +

1

2
Fµν{Fλρ,Fτσ}Φ

− 1

2l2

(
− 1

4
{Fλτ ,FµνΦ2}FρσΦ +

i

2
D̂λFµνD̂τΦ

2FρσΦ

+
1

2
{Fλµ,Fτν}Φ2FρσΦ +

i

4
Fµν [D̂λΦ, D̂τΦ]FρσΦ

+
i

2
FµνΦ2D̂λFρσD̂τΦ +

1

2
FµνΦ2{Fλρ,Fτσ}Φ

))
.

This linear NC correction is real and invariant under OSp(4, 2) gauge transforma-

tions. However, a careful examination shows that after the gauge fixing it vanishes

completely,

S
(1)
42 |g.f. = 0 . (8.54)

But we still have the additional NC action S?A invariant under purely bosonic NC-

deformed SO(2, 3)?×U(1)? gauge transformations. The only additional SW expan-

sion we need is that of f̂ , namely

f̂ = f − 1

4
θρσ{Ωρ, (∂σ +Dσ)f}+O(θ2) . (8.55)

The first order NC correction to (8.48) before gauge fixing is given by

S
(1)
A =S

(1)
Af + S

(1)
Aff

=− θλτ

64l
Tr

∫
d4x εµνρσ

(
− ifDλf̃µνDτ (DρφDσφφ) +

1

2
{f̃λτ , f}f̃µνDρφDσφφ

− f{f̃λµ, f̃τν}DρφDσφφ− if f̃µνDλ(DρφDσφ)Dτφ

− if f̃µν(DλDρφ)(DτDσφ)φ− ff̃µν{{f̃λρ, Dτφ}, Dσφ}φ

+
i

3!

(
1

2
{f̃λτ , f 2}DµφDνφDρφDσφφ− f 2{[{f̃λµ, Dτφ}, Dνφ], DρφDσφ}φ

− if 2
(
Dλ(DµφDνφDρφDσφ)Dτφ+Dλ(DµφDνφDρφ)(DτDσφ)φ

+Dλ(DµφDνφ)(DτDρφ))Dσφφ+ (DλDµφ)(DτDνφ)DρφDσφφ
)))

+ c.c.

where we can distinguish the linear f -part and the quadratic f 2-part, and all terms

are manifestly SO(2, 3)× U(1) invariant by the virtue of SW map.
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After calculating traces and evaluating the gauge-fixed action S
(1)
A |g.f. on the

EoMs of the components of the auxiliary field f (as it turns out, to obtain the first

order NC correction, we only need to insert zeroth order (classical) EoMs (8.36) in

the gauge-fixed first order NC action S
(1)
A |g.f.), we obtain

S
(1)
A,EoM |g.f. =

6∑
j=1

S
(1)
A,EoMf.j|g.f. + S

(1)
A,EoMff |g.f. , (8.56)

with the individual terms:

S
(1)
A,EoMf.1|g.f. = − θ

λτ

64κ

∫
d4x e

{
F̃µνRµνab

(
R ab
λτ −

2

l2
eaλe

b
τ

)
+ F̃ρσeaρebσ

(
RµνabR

cd
λτ eµc e

ν
d −

2

l2
Rλτab

)
+ 4F̃ρµecρ

(
RµνacR

ab
λτ eνb +

2

l2
Rµλace

a
τ

)
+ F̃ρσeρaeσbR ab

λτ

(
R mn
µν eµme

ν
n −

12

l2

)
+

2

l2
F̃µνT a

λτ

(
Tµνa − 2Tρνme

ρ
ae
m
µ

)
− 2

l2
F̃λτ

(
R mn
µν eµme

ν
n −

12

l2
− 4

l2

κ2
F̃µνF̃µν

)}
, (8.57)

S
(1)
A,EoMf.2|g.f. = −θ

λτ

8κ

∫
d4x e

{
+ (DL

λR
mc

µν )(DL
τ e

r
ρ)e

σ
c

(
eνm(F̃ µ

σ eρr − F̃ ρ
σ e

µ
r ) + F̃ ν

σ eµr e
ρ
m

)
− 1

l2
F̃ µ
ρ eρc

(
DL
λT

c
τµ − eλbR bc

τµ

)
− 4

l2
F̃ µ
ν (DL

λ e
r
ρ)(D

L
τ e

m
µ )eνme

ρ
r

− 1

l2
(DL

λ e
r
ρ)e

ρ
r

(
eνc F̃ µ

τ T c
µν − eνc F̃ µ

ν T c
µτ

)
+

1

2l2
T r
λτ T

c
µν F̃ ν

σ eσc e
µ
r

+
1

l2
(DL

λ e
r
ρ)e

ν
r

(
T m
µν

(
F̃ µ
τ eρm − F̃ ρ

τ e
µ
m

)
+ T m

τν F̃ ρ
µ e

µ
m

)
+

2

l2
F̃ ρ
σ e

σ
c (DL

λ e
r
ρ)(D

L
τ e

c
ν)e

ν
r +

1

l4
F̃λτ

}
, (8.58)

S
(1)
A,EoMf.3|g.f. =

θλτ

32κ

∫
d4x e

{
− F̃µνRλνam

(
R am
τµ − 4

l2
eaτe

m
µ

)
+ F̃ρσR am

λµ R bn
τν

(
eµae

ν
me

ρ
be
σ
n + eρae

σ
me

µ
b e
ν
n + 2eρne

σ
m(eµae

ν
b − eνae

µ
b )
)

− 2

l2
eρne

σ
b

(
2F̃λρR bn

τσ + F̃ρσR bn
λτ

)
+

2

l2
F̃µνT a

λµ Tτνa +
8

κ2
F̃µνF̃λµF̃τν

}
, (8.59)
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(
S

(1)
A,EoMf.4|g.f. + S

(1)
A,EoMf.5|g.f.

)
= − θ

λτ

32κ

∫
d4x e

{
+R ab

µν (DL
λ e

m
ρ )(DL

τ eσm)
(
F̃µνeρaeσb + F̃ρσeµaeνb − 4F̃µρeνaeσb

)
− 1

l2
R ab
µν

(
F̃µνeλaeτb + F̃λτeµaeνb − 4F̃µλe

ν
aeτb

)
− 1

l2
F̃µνηmn(DL

λ e
m
µ )(DL

τ e
n
ν )

+
2

l2
T a
µν (DL

λ e
b
ρ)
(
F̃µν(2eρaeτb − e

ρ
beτa) + 2F̃ µ

τ (eρae
ν
b − e

ρ
be
ν
a)

+ 2F̃ρµ(2eνaeτb − eνbeτa) + 2F̃ρτeµaeνb
)
− 2

l2
F̃ρµTµνcT d

λτ ecρe
ν
d (8.60)

+
4

l2
Tλνa(D

L
τ e

d
ρ)e

a
σ

(
F̃σνeρd − F̃

σρeνd
)
− 4

l2
R c
λν ae

a
ρ

(
F̃ρνeτc − F̃ρτeνc

)
− 6

l4
F̃λτ

}
,

S
(1)
A,EoMf.6|g.f. =

θλτ

32κ

∫
d4x e

{
F̃ρσeaρebσeµmeνn

(
R mn
λτ Rµνab − 2R mn

λµ Rτνab

)
+

8

κ2

(
F̃λτ F̃2 − 2F̃µνF̃λµF̃τν

)
+

2

l2
F̃µνeaµebνRλτab +

4

l2
F̃λνενae

ρ
bR

ab
τρ

− 4

l2
F̃µνeaνe

ρ
b

(
TρµaT

b
λτ − TµλaT b

τρ − TλρaT b
τµ

)
− 8

l4
F̃λτ

}
, (8.61)

And finally, the f 2-term,

S
(1)
A,EoMff |g.f. = − θλτ

16κ3

∫
d4x e F̃λτ F̃2 . (8.62)

Action (8.56) represents the first order NC correction to N = 2 AdS4 SUGRA. It

involves various new couplings between U(1) gauge field, gravity and gravitini fields

that appear due to space-time noncommutativity. As it stands, this action seems

too complicated to be analyzed in its entirety. However, we can restrict ourselves to

some particular domain of parameters and work with an approximated NC action.

In particular, we will derive a low-energy approximation of (8.56), by taking into

account terms at most quadratic in partial derivative. Therefore, we include only

terms linear in curvature, and linear and quadratic in torsion. Additionally, we

assume that spin connection ω ab
µ and the first order derivatives of vierbeins are

of the same order. Note also that the torsion constraint T̃ a
µν = 0 (8.18) gives us

T a
µν = −iΨµγ

aΨν . These assumptions yield a very simple action,

S
(1)
low-energy = − 9θµν

16l4κ

∫
d4x e F̃µν = − 9θµν

16l4κ

∫
d4x e (Fµν − Ψ̄µiσ

2Ψν)

= − 9

8l4κ

∫
d4x e (ψ̄+

µ iΘ
µνψ+

ν ) + surface term . (8.63)
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This mass-like term for charged gravitino ψ+
µ , minimally coupled to gravity, appears

due to space-time noncommutativity, and “renormalizes” the corresponding term

(8.42) in the classical SUGRA action (8.41). If we again absorb κ−1 in ψ+
µ to obtain

the canonical dimensions, the mass-like parameter is ∼ lPΛ2
NC/l

4, and it vanishes

under WI contraction.

After WI contraction, the action (8.56) reduces to

SA|g.f.
WI
= − θ

λτ

64κ

∫
d4x e

{
F̃µνRµνρσR

ρσ
λτ − F̃µνRρσµνR

ρσ
λτ − 4F̃µρRµνρσR

νσ
λτ

− 2F̃µνR ρσ
λµ Rτνρσ + 8F̃ρσR µρ

λµ R νσ
τν + F̃µνR µν

λτ R− 4

κ2
F̃λτ F̃2 +

16

κ2
F̃µνF̃λµF̃τν

+ 8(DL
λR

mc
µν )(DL

τ e
r
ρ)e

σ
c

(
F̃ µ
σ eνme

ρ
r − F̃ ρ

σ e
µ
r e
ν
m + F̃ ν

σ eµr e
ρ
m

)
+ 2R ab

µν ηrs(D
L
λ e

r
ρ)(D

L
τ e

s
σ)
(
F̃µνeρaeσb + F̃ρσeµaeνb − 4F̃µρeνaeσb

)}
. (8.64)

At this point we are confronted with an interesting question. The fact that N = 2

AdS4 superalgebra contracts to N = 2 Poinacaré superalgebra when l→∞ is consi-

stently reflected on the level of classical (undeformed) action (8.40); classical N = 2

AdS4 SUGRA reduces to classical N = 2 Poincaré SUGRA under WI contraction.

However, it is not a priori clear whether this relation holds after NC deformation,

that is, whether NC deformation and WI contraction actually commute. For that

matter, one would have to explicitly compute the NC correction to classical N = 2

Poincaré SUGRA and compare it to the action (8.64).
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9 Conclusion and Outlook

Let us give a general survey of the thesis, summarize what is thus far accom-

plished by it, and propose some new directions of research. First of all, we should

emphasize that the obtained results are to be regarded as an extension and upgrade

of the substantial body of work that was previously established by many authors. In

its present state, the content of the thesis certainly does not amount to a complete

account on the subject, and it opens a plethora of new questions that ought to be

answered in the future. This is perhaps its greatest value.

There are several major themes in the thesis that we sought to harmoniously

synchronize. Our general goal was to define and study consistent NC deformati-

ons of some classical (i.e. undeformed) gauge field theories, including gravity. The

AdS gauge theory of gravity, having SO(2, 3) connection as the only dynamical field

in play, was our starting point. The advantage of the associated SO(2, 3) gauge-

invariant action is its geometric character (it does not explicitly involve quantities

related to the underlying space-time manifold, such as metric, curvature or torsion).

To relate this theory with GR, one has to break the original SO(2, 3) gauge sym-

metry to the usual Lorentz SO(1, 3) gauge symmetry. For that purpose, we used

a constrained auxiliary field (the method that was already advocated in the litera-

ture). The symmetry breaking is imposed directly by fixing the components of the

auxiliary field, and this is another important general aspect of our approach. After

the gauge fixing, we can identify the components of the SO(2, 3) gauge field with

Lorentz spin-connection and vierbien, thus obtaining their proper unification. Ca-

nonical (θ-constant) NC deformation is performed by following the Seiberg-Witten

approach to NC gauge field theory. Classical actions are promoted into their NC

counterparts by introducing Moyal ?-product instead of the commutative point-

wise field multiplication. The resulting non-extended NC actions are subsequently

expanded in powers of the deformation parameter θµν via SW map, up to the first

order. By construction, expanded actions are endowed with gauge symmetry of

the corresponding classical actions, order-by-order. After imposing the gauge fixing

condition (physical gauge), NC corrections emerge.

The SO(2, 3)? model of NC gravity has been previously established and well

developed. It provided a basic framework for the research presented in this the-

sis. However, its most significant insight, concerning the origins of the apparent

breaking of diffeomorphism invariance in NC-deformed theories, remains to be fully

understood. This will be one of our major research directions in the future. The

SO(2, 3)? model of NC gravity exhibits quadratic (in the deformation parameter)
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NC correction to GR, which is notoriously difficult to analyze, even in the low-energy

regime. Moreover, it seems that this is a generic property of NC gravity. Inclusion

of matter fields coupled to NC gravity improves the situation drastically, yielding a

non-trivial linear NC correction to the classical action. We considered Dirac spinor

field coupled to U(1) gauge field and obtain a new model of NC Electrodynamics

that can be analyzed both in curved and flat space-time. Some important predic-

tions of this theory are the NC birefringence effect (energy levels of an electron

become helicity-dependent due to space-time noncommutativity) and NC-deformed

relativistic Landau levels of an electron in background magnetic field. Since they

are associated with the lowest perturbative order, these results could be used to

constrain the yet unknown length scale ΛNC at which NC effects become relevant.

One could also proceed by calculating perturbative loop corrections and explore the

renormalizability properties of the this NC QED model. The generalization to NC

Yang-Mills theory is straightforward, and it may turn out to be relevant for the

study of the early Universe and quark-gluon plasma.

To build a complete NC Standard Model within SO(2, 3) framework, one has to

introduce scalar fields. It is fairly easy to construct an action for real scalar field ϕ,

Sϕ = iTr

∫
d4x εµνρσ

(
fDµφDνφDρφφDσϕ+ 6lf 2DµφDνφDρφDσφφ

)
+ c.c.

that reduces to the standard kinetic action after imposing the gauge condition,

Sϕ|g.f. =
1

2

∫
d4x
√
−g gρσ∂ρϕ∂σϕ .

This action has quadratic NC correction after canonical deformation.

However, a complex scalar field (scalar electrodynamic) poses some severe dif-

ficulties. The total gauge group, in this case, is SO(2, 3) × U(1) and the auxiliary

field f has to be U(1)-charged as well. Everything is consistent at the classical

level, but the problem arises (and it seems to be a generic one) when we try to ap-

ply the Seiberg-Witten prescription to the field f that transforms differently under

SO(2, 3) than under U(1). If we want to introduce the Higgs sector and define some

NC spontaneous symmetry breaking, we will have to overcome this issue.

Regarding SUGRA, our primary goal was to obtain explicit NC correction to

N = 2 AdS SUGRA in D = 4. We stared from an undeformed action of the Yang-

Mills type (already advocated in the literature), invariant under orthosymplectic

OSp(4|2) gauge transformations. However, this action alone is not enough to obtain

N = 2 AdS4 SUGRA after imposing the gauge fixing condition. In particular, one
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has to add a supplementary action endowed with SO(2, 3)× U(1) gauge symmetry

(bosonic sector of OSp(4|2)) that provides the missing terms in the classical SUGRA

action (e.g. the kinetic term for U(1) gauge field). Therefore, we have the following

schema:

(OSp(4|2) invariant action) + (SO(2, 3)× U(1) invariant action)

g.f.

y
y g.f.

(SO(1, 3)× U(1) invariant action) + (SO(1, 3)× U(1) invariant action)

︸ ︷︷ ︸
N=2 AdS SUGRA in D=4

This situation seems curious considering that a similar OSp(4|1) gauge-invariant

action reduces to the complete N = 1 AdS4 SUGRA action without including any

additional terms. We may conclude that extended N > 1 AdS4 SUGRA cannot be

obtained simply by gauging the corresponding orthosymplectic group OSp(4|N) and

subsequently fixing the gauge. For N > 1 we would have to include an additional

term, similar to the one for N = 2, that involves non-Abelian Yang-Mills gauge

field.

For theOSp(4|2) gauge-invariant part of the classical action, linear NC correction

vanishes. This result was not expected. Namely, we have previously established that

canonical NC deformation of pure gravity, regarded as a gauge theory of SO(2, 3)

group, leads to quadratic NC correction. However, after including matter fields, e.g.

Dirac spinors coupled to U(1) gauge field, linear NC correction appears. Since we

can take a pair of Majorana vector-spinors of OSp(4|2) SUGRA and form a pair

of U(1)-charged Dirac vector-spinors, related to each other by C-conjugation, we

expected to obtain a non-vanishing first order NC correction from the OSp(4|2)

action, as well. From this point, one could proceed by pushing on to calculate the

second-order NC correction, as for pure NC gravity, and study its consequences.

However, the supplementary bosonic action does provide a non-trivial linear NC

correction that is calculated explicitly. It involves various new interaction terms that

appear due to space-time noncommutativity. This action is obtained by applying

the similar auxiliary field method as in the case of AdS Electrodynamics. The full

action is difficult to analyze, but we can restrict ourselves to the low-energy sector

of the theory by taking into account only terms that are at most quadratic in partial

derivatives. This leaves us with a single mass-like term for charged gravitino.
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There are two additional terms with OSp(4|2) gauge symmetry that we could

consider. We denote them by S ′ and S ′′ and they are given by

S ′ =
a′

128πGN l
STr

∫
d4x εµνρσFµνD̂ρΦD̂σΦΦ + c.c. ,

S ′′ = − ia′′

128πGN l3
STr

∫
d4x εµνρσD̂µΦD̂νΦD̂ρΦD̂σΦΦ ,

with free dimensionless parameters a′, a′′, and OSp(4|2) covariant derivative D̂µ.

Their SO(2, 3) gauge-invariant counterparts were analyzed previously. After gauge

fixing, they modify the coefficients in the classical action but do not introduce new

terms. In particular, they give us a freedom to eliminate the cosmological constant

in the classical action. NC deformation of S ′ and S ′′ will change our final result, but

their importance is not as yet evident. Analysis of these additional NC corrections

remains to be done.

Perhaps the most crucial question that arises out of these considerations concerns

the consistency of the Wigner-Inönü group contraction after canonical NC deforma-

tion. WI contraction provides a formal statement of the correspondence principle

from the aspect of symmetry, and it is not fully understood how NC deformation

affects this operation. We have shown in this thesis that for AdS Electrodynamics

and N = 2 AdS4 SUGRA, WI contraction works well at the level of their classical

actions. Also, after NC deformations, we obtained non-vanishing contracted NC

actions. To determine whether the correspondence principle is consistent with the

NC-deformed symmetry, we have to calculate NC corrections to Electrodynamics

in curved space-time and N = 2 Poincaré SUGRA by the method of minimal sub-

stitution. It seems that our results suggest that the answer is negative, at least in

Minkowski space.
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A Spinor action - individual terms

The kinetic spinor action (5.29) contains eight terms before gauge fixing. Here

we present them, in the order of appearance in (5.29), after the gauge fixing, and

what remains of them after Wigner-Inönü (WI) contraction.

Terms from the kinetic spinor action after gauge fixing:

S
(1)
1 = +

θαβ

16

∫
d4x e R ab

αβ eσb (ψ̄γaD
L
σψ)− iθαβ

32

∫
d4x e R ab

αβ ε d
abc e

σ
d(ψ̄γcγ5DL

σψ)

+
iθαβ

16l

∫
d4x e T a

αβ e
σ
a(ψ̄DL

σψ) +
θαβ

16l

∫
d4x e T a

αβ e
µ
a(ψ̄σ σ

µ D
L
σψ)

+
iθαβ

16l2

∫
d4x e ε d

abc e
a
αe

b
βe

σ
d(ψ̄γcγ5DL

σψ)− θαβ

8l2

∫
d4x e (ψ̄γαD

L
βψ)

+
θαβ

16l

∫
d4x e R ab

αβ (ψ̄σabψ)− θαβ

8l2

∫
d4x e T a

αβ (ψ̄γaψ)

− θαβ

8l3

∫
d4x e (ψ̄σαβψ) (A.1)

S
(1)
1

WI
=
θαβ

16

∫
d4x e

(
R ab
αβ eσb (ψ̄γaD

L
σψ)− i

16
R ab
αβ ε d

abc e
σ
d(ψ̄γcγ5DL

σψ)
)

(A.2)

S
(1)
2 = +

iθαβ

12

∫
d4x e (DL

αe
a
µ)(DL

β e
b
ν)ε

cds
b eµc e

ν
de
σ
s (ψ̄γaγ5D

L
σψ)

− iθαβ

12

∫
d4x e ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

rcdseµc e
ν
de
σ
s (ψ̄γrγ5D

L
σψ)

− θαβ

12l

∫
d4x e (DL

β e
b
ν)ε

cds
b eαce

ν
de
σ
s (ψ̄γ5D

L
σψ)

− iθαβ

12l2

∫
d4x e ε cd

ab eaαe
b
βe

σ
d(ψ̄γcγ5D

L
σψ)

+
θαβ

24l

∫
d4x e ηab(D

L
αe

a
µ)(DL

β e
b
ν)(ψ̄σ

µνψ)

− iθαβ

24l

∫
d4x e (DL

αe
a
µ)eµb ε

bcd
a eβd(ψ̄γcγ5ψ)

− θαβ

24l

∫
d4x e (DL

αe
a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)(ψ̄σcbψ)

+
θαβ

12l3

∫
d4x e (ψ̄σαβψ) (A.3)

S
(1)
2

WI
=
iθαβ

12

∫
d4x e (DL

αe
a
µ)(DL

β e
b
ν)e

µ
c e
ν
de
σ
s (ψ̄

(
ε cds
b γa − ηabεrcdsγr

)
γ5D

L
σψ) (A.4)
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S
(1)
3 =− θαβ

4

∫
d4x e (DL

αe
a
µ)(eµae

σ
b − e

µ
b e
σ
a)(ψ̄γbDL

βD
L
σψ)− θαβ

4l

∫
d4x e(ψ̄σ σ

α D
L
βD

L
σψ)

− iθαβ

2l

∫
d4x e (DL

αe
a
µ)eµa(ψ̄DL

βψ)− θαβ

8l

∫
d4x e (DL

αe
a
µ)eµb (ψ̄σ b

a D
L
βψ)

+
θαβ

2l2

∫
d4x e (ψ̄γαD

L
βψ) +

iθαβ

16l

∫
d4x e T a

αβ e
σ
a(ψ̄DL

σψ)

− θαβ

8l

∫
d4x e (DL

αe
a
µ)(eµae

σ
b − e

µ
b e
σ
a)ecβ(ψ̄σbcD

L
σψ)

+
iθαβ

8l2

∫
d4x e ε cd

ab eaαe
b
βe

σ
d(ψ̄γcγ5D

L
σψ)

− θαβ

32l2

∫
d4x e T a

αβ (ψ̄γaψ)− 3θαβ

16l2

∫
d4x e (DL

αe
a
µ)eµa(ψ̄γβψ)

− θαβ

8l

∫
d4x e (DL

αe
a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)(ψ̄σcbψ)

+
iθαβ

16l2

∫
d4x e (DL

αe
a
µ)eµb e

c
βε

b
a cd(ψ̄γ

dγ5ψ)

+
θαβ

16l2

∫
d4x e (DL

αe
a
µ)eβa(ψ̄γ

µψ)− θαβ

16l3

∫
d4x e (ψ̄σαβψ) (A.5)

S
(1)
3

WI
= −θ

αβ

4

∫
d4x e (DL

αe
a
µ)(eµae

σ
b − e

µ
b e
σ
a)(ψ̄γbDL

βD
L
σψ) (A.6)

S
(1)
4 =− iθαβ

24

∫
d4x e ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

cdrseµc e
ν
de
σ
d(ψ̄γrγ5D

L
σψ)

− iθαβ

24l2

∫
d4x e ε cd

ab eaαe
b
βe

σ
d(ψ̄γcγ5D

L
σψ)

+
θαβ

24l

∫
d4x e ηab(D

L
αe

a
µ)(DL

β e
b
ν)(ψ̄σ

µνψ)

+
θαβ

24l3

∫
d4x e (ψ̄σαβψ) (A.7)

S
(1)
4

WI
= −iθ

αβ

24

∫
d4x e ηab(D

L
αe

a
µ)(DL

β e
b
ν)ε

cdrseµc e
ν
de
σ
d(ψ̄γrγ5D

L
σψ) (A.8)
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(Terms S
(1)
5 , S

(1)
6 and S

(1)
7 are combined into one because of their similarity.)

S
(1)
5 + S

(1)
6 + S

(1)
7 =− iθαβ

24

∫
d4x e R ab

αµ ε d
abc e

c
β(eµde

σ
s − eµs eσd)(ψ̄γsγ5DL

σψ)

− iθαβ

4l

∫
d4x e T a

αβ e
σ
a(ψ̄DL

σψ) +
iθαβ

4l

∫
d4x e T a

αµ e
µ
a(ψ̄DL

βψ)

− θαβ

12l

∫
d4x e T a

αµ ε
cd

ab ebβe
µ
c e
σ
d(ψ̄γ5DL

σψ)

+
iθαβ

12l2

∫
d4x e ε d

abc e
a
αe

b
βe

σ
d(ψ̄γcγ5DL

σψ)

− θαβ

16l

∫
d4x e R ab

αµ ε d
abc e

c
βe

µ
d(ψ̄γ5ψ)

− θαβ

48l

∫
d4x e R ab

αβ (ψ̄σabψ)− θαβ

24l

∫
d4x e R ab

αµ eµae
c
β(ψ̄σbcψ)

+
iθαβ

24l2

∫
d4x e T a

αµ e
b
βε

cd
ab eµc (ψ̄γdγ5ψ)

+
θαβ

8l2

∫
d4x e T a

αβ (ψ̄γaψ)− θαβ

8l2

∫
d4x e T a

αµ e
µ
a(ψ̄γβψ)

− θαβ

12l3

∫
d4x e (ψ̄σαβψ) (A.9)

S
(1)
5 + S

(1)
6 + S

(1)
7

WI
= −iθ

αβ

24

∫
d4x e R ab

αµ ε d
abc e

c
β(eµde

σ
s − eµs eσd)(ψ̄γsγ5DL

σψ) (A.10)

S
(1)
8 =− θαβ

8

∫
d4x e R ab

αµ eµa(ψ̄γbD
L
βψ)− iθαβ

16

∫
d4x e R bc

αµ eµaε
a
bcm(ψ̄γmγ5DL

βψ)

− iθαβ

8l

∫
d4x e T a

αµ e
µ
a(ψ̄DL

βψ) +
θαβ

8l

∫
d4x e T a

αµ e
µ
b (ψ̄σ b

a D
L
βψ)

− 3θαβ

8l2

∫
d4x e (ψ̄γαD

L
βψ)− θαβ

16l

∫
d4x e R ab

αµ eµae
c
β(ψ̄σbcψ)

− θαβ

32l

∫
d4x e R ab

αβ (ψ̄σabψ)− θαβ

16l

∫
d4x e R ab

αµ eβae
µ
c (ψ̄σ c

b ψ)

− iθαβ

16l

∫
d4x e R ab

αµ eµaeβb(ψ̄ψ) +
θαβ

32l

∫
d4x e R ab

αµ ε d
abc e

c
βe

µ
d(ψ̄γ5ψ)

− θαβ

16l2

∫
d4x e T a

αβ (ψ̄γaψ) +
θαβ

16l2

∫
d4x e T a

αµ e
µ
a(ψ̄γβψ)

+
θαβ

16l2

∫
d4x e T a

αµ eβa(ψ̄γ
µψ)− 3θαβ

16l2

∫
d4x e (ψ̄σαβψ) (A.11)

S
(1)
8

WI
= −θ

αβ

8

∫
d4x e ψ̄

(
R ab
αµ eµaγb +

i

2
R bc
αµ eµaε

a
bcmγ

mγ5

)
DL
βψ (A.12)
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We consider separately each of the three bilinear mass-like spinor actions (5.33),

(5.34) and (5.35), after gauge fixing. WI contraction will eliminate terms multiplied

by the cosmological mass 2/l but some of the m-terms survive.

The first mass-like term after gauge fixing:

S
(1)
m,1 = c1a(m, l)θαβ

∫
d4x e ψ̄

(
− 6i(DL

αe
a
µ)eµaD

L
β + ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb −

3

l
(DL

αe
a
µ)eµaγβ −

1

l2
σαβ

− 1

4
R ab
αβ σab − 2R ab

αµ eµae
c
βσbc −

3

2l
T a
αβ γa

)
ψ (A.13)

S
(1)
m,1

WI
= c1mθ

αβ

∫
d4x e ψ̄

(
− 6i(DL

αe
a
µ)eµaD

L
β + ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb −

1

4
R ab
αβ σab − 2R ab

αµ eµae
c
βσbc

)
ψ (A.14)

The second mass-like term after gauge fixing:

S
(1)
m,2 = c2a(m, l)θαβ

∫
d4x e ψ̄

(
6i(DL

αe
a
µ)eµaD

L
β − ηab(DL

αe
a
µ)(DL

β e
b
ν)σ

µν (A.15)

+ 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb +

1

4
R ab
αβ σab + 2R ab

αµ eµae
c
βσbc +

3

l
T a
αµ e

µ
aγβ

)
ψ

S
(1)
m,2

WI
= c2mθ

αβ

∫
d4x e ψ̄

(
6i(DL

αe
a
µ)eµaD

L
β − ηab(DL

αe
a
µ)(DL

β e
b
ν)σ

µν

+ 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb +

1

4
R ab
αβ σab + 2R ab

αµ eµae
c
βσbc

)
ψ (A.16)

The third mass-like term after gauge fixing:

S
(1)
m,3 = c3a(m, l)θαβ

∫
d4x e ψ̄

(
− 6i(DL

αe
a
µ)eµaD

L
β + ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb +

1

l
(DL

αe
a
µ)eµaγβ −

1

4
R ab
αβ σab

− 2R ab
αµ eµae

c
βσbc +

1

2l
T a
αβ γa −

4

l
T a
αµ e

µ
aγβ +

3

l2
σαβ

)
ψ (A.17)

S
(1)
m,3

WI
= c3mθ

αβ

∫
d4x e ψ̄

(
− 6i(DL

αe
a
µ)eµa D

L
β + ηab(D

L
αe

a
µ)(DL

β e
b
ν)σ

µν

− 2(DL
αe

a
µ)(DL

β e
b
ν)(e

µ
ae
ν
c − eµc eνa)σcb −

1

4
R ab
αβ σab − 2R ab

αµ eµae
c
βσbc

)
ψ (A.18)
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B Actions involving U(1) gauge field

Here we present the six terms of S
(1)
Af =

∑6
i=1 S

(1)
Af.i after gauge fixing.

S
(1)
Af.1 = −θ

αβ

16

∫
d4x e

(
− 1

16
εabcdε

rspteµpe
ν
tF

ab
αβ f cdFµνrs

+ F ab
αβ f c5

(
Fµνa5 e

µ
b e
ν
c +

1

2
Fµνc5e

µ
ae
ν
b

)
+ F a5

αβ f cd
(
Fµνd5e

µ
ae
ν
c +

1

2
Fµνa5 e

µ
c e
ν
d

)
+

1

4
F mn
µν eµme

ν
n

(
F ab
αβ fab + 2F a5

αβ fa5

)
+ 2Fαβf cdFµνeµc eνd

)
+ c.c. (B.19)

S
(1)
Af.2 = −θ

αβ

8l

∫
d4x e

(
eµd
(
f d
c (DβF

c5
αµ ) + f 5

c (DβF
dc

αµ )
)

(B.20)

− l(DL
αe

r
ρ)
(
f d
c (DβF

mc
µν ) + f d

5 (DβF
m5

µν )
)
(eµde

ν
me

ρ
r + eµr e

ν
de
ρ
m + eµme

ν
re
ρ
d)
)
c.c.

S
(1)
Af.3 =

θαβ

8

∫
d4x e

(
− 1

16
εambnε

cdpteµpe
ν
t fcdF

am
αµ F bn

βν

+ F am
αµ F b5

βν

(
fa5e

µ
me

ν
b + fb5e

µ
ae
ν
m

)
+ 2f cdFαµFβνeµc eνd (B.21)

+
1

4
eµc e

ν
d

(
f cd
(
F am
αµ Fβνam + 2F a5

αµ Fβνa5

)
+ 4fm5F

dm
αµ F c5

βν

))
+ c.c.

S
(1)
Af.4 = −θ

αβ

32l

∫
d4x e εµνρσ

(
fa5F bc

µν (DL
αe

d
ρ)e

δ
ae
λ
b e
γ
c

(
gσβεδλγτe

τ
d − εδλγσeβd

)
+ fabF c5

µν (DL
αe

d
ρ)e

δ
ae
λ
b e
γ
c

(
gσβεδλγτe

τ
d − εδλγσeβd

)
− 2(DL

αe
e
ρ)εδλσβe

δ
be
λ
e

(
fa5F b

µν a + fabFµνa5

)
(B.22)

+
1

2l
εδλγτe

δ
ae
λ
b e
γ
c e
τ
df

abF cd
µν gαρgσβ +

2

l
(fabF c

µν a − f b5F c5
µν )gαρεδλσβe

δ
be
λ
c

)
+ c.c.

S
(1)
Af.5 =

θαβ

128

∫
d4x e εµνρσεδλγτe

δ
ae
λ
b e
γ
c e
τ
df

abF cd
µν

(
(DL

αe
e
ρ)(D

L
β eσe) +

1

l2
gαρgσβ

)
+ c.c.

(B.23)

S
(1)
Af.6 = −θ

αβ

64

∫
d4x e εµνρσ

(
εδλβσe

δ
ee
λ
fF

ef
αρ (fabFµνab + 2fa5Fµνa5)

+ 4εδλβσe
δ
ee
λ
b

(
fabFµνa5F

e5
αρ + fa5F b

µν aF
e5

αρ + 2fabFαρFµν
))

+ c.c. (B.24)

106



C Matrix representation of osp(4|2) superalgebra

Here we present an explicit 6 × 6 matrix representation of OSp(4|2) generators

{M̂AB, Q̂
I
α, T̂} that satisfy osp(4|2) superalgebra.

Bosonic generators of OSp(4|2):

M̂AB =


MAB

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0


T̂ =


04×4

0

0

0

0

0

0

0

0

0 0 0 0 0 i

0 0 0 0 −i 0


(C.1)

The imaginary unit in T̂ is introduced for convenience.

Two sets of fermionic generators of OSp(4|2):

(Q̂1)1 =


04×4

0

1

0

0

0

0

0

0

1 0 0 0 0 0

0 0 0 0 0 0


(Q̂1)2 =


04×4

−1

0

0

0

0

0

0

0

0 1 0 0 0 0

0 0 0 0 0 0


(C.2)

(Q̂1)3 =


04×4

0

0

0

−1

0

0

0

0

0 0 1 0 0 0

0 0 0 0 0 0


(Q̂1)4 =


04×4

0

0

1

0

0

0

0

0

0 0 0 1 0 0

0 0 0 0 0 0


(C.3)

The second set of fermionic generators (Q̂2)α is obtained from the first one simply

by interchanging 5th and 6th column, and 5th and 6th row. One can readily check

that supermatrices (C.1), (C.2) and (C.3), along with those that correspond to the

second set of fermionic generators, satisfy the osp(4|2) superalgebra (8.4).
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D Majorana spinors and AdS identities

Some basic Fierz identities involving Majorana spinors ψ and χ:

ψ̄χ = χ̄ψ = (ψ̄χ)†

ψ̄γ5χ = χ̄γ5ψ = −(ψ̄γ5χ)†

ψ̄γaγ5χ = χ̄γaγ5ψ = (ψ̄γaγ5χ)†

ψ̄γaχ = −χ̄γaχ = −(ψ̄γaχ)†

ψ̄σabχ = −χ̄σabψ = −(ψ̄σabχ)† (D.1)

Also, we frequently use the following important identity in 4D. For any pair of

Majorana spinors, ψ and χ, we can expand ψχ̄ in the Clifford algebra basis:

− 4ψχ̄ = (χ̄ψ)I4 + (χ̄γaψ)γa + (χ̄γ5ψ)γ5 + (χ̄γaγ5ψ)γ5γa +
1

2
(χ̄σabψ)σab (D.2)

Some AdS algebra relations:

[MAB,MCD] = i(ηADMBC + ηBCMAD − ηACMBD − ηBDMAC)

{MAB,MCD} =
i

2
εABCDEΓE +

1

2
(ηACηBD − ηADηBC)

{MAB,ΓC} = iεABCDEM
DE

[MAB,ΓC ] = i(ηBCΓA − ηACΓB)

Γ†A = −γ0ΓAγ0 , M †
AB = γ0MABγ0 (D.3)

Some useful identities involving γ-matrices and σ-matrices:

γaγb = ηab − iσab
γaγbγc = ηabγc − ηacγb + ηbcγa + iεabcdγ

dγ5

σabγc = iηbcγa − iηacγb + εabcdγ5γ
d

γcσab = iηacγb − iηbcγa + εabcdγ5γ
d

σabγ5 = i
2
εabcdσ

cd

σabσcd = ηacηbd − ηadηbc + iεabcdγ5 + i(ηadσbc + ηbcσad − ηacσbd − ηbdσac)

{σab, σcd} = 2(ηacηbd − ηadηbc) + 2iεabcdγ5,

[σab, γc] = 2i(ηbcγa − ηacγb),

{σab, γc} = 2εabcdγ5γ
d,

(D.4)
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Identities with traces:

Tr(ΓAΓB) = 4ηAB

Tr(ΓA) = Tr(ΓAΓBΓC) = 0

Tr(ΓAΓBΓCΓD) = 4(ηABηCD − ηACηBD + ηADηCB)

Tr(ΓAΓBΓCΓDΓE) = −4iεABCDE

Tr(MABMCDΓE) = iεABCDE

Tr(MABMCD) = −ηADηCB + ηACηBD

Tr(MABΓEΓFΓG) = 2εABEFG (D.5)

Tr(MABMCDΓEΓFΓG) = iεABCDEηFG − iεABCDFηEG + iεABCDGηEF

+iεBCEFGηAD + iεADEFGηBC − iεBDEFGηAC − iεACEFGηBD

Tr(γaγbγcγd) = 4(ηabηcd − ηacηbd + ηcdηbc)

Tr(σabσcd) = 4(ηacηbd − ηadηbc)

Tr(σabσcdγ5) = 4iεabcd

Tr(γaγbσcd) = −4i(ηacηbd − ηadηbc)

Tr(γaγbσcdγ5) = 4εabcd

Tr(σabσcdσef ) = 4i(ηad(ηbeηcf − ηbfηce) + ηbc(ηaeηdf − ηafηde)

−ηac(ηbeηdf − ηbfηde)− ηbd(ηaeηcf − ηafηce))

Tr(σabσcdσefγ5) = 4(ηacεbdef + ηbdεacef − ηadεbcef − ηbcεadef ) (D.6)
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hematische Annalen, 104(1), 570-578.

[8] Von Neumann, J. (2018). Mathematical Foundations of Quantum Mechanics:

New Edition. Princeton university press.

[9] Wigner, E. P. (1997). On the quantum correction for thermodynamic equili-

brium. In Part I: Physical Chemistry. Part II: Solid State Physics (pp. 110-120).

Springer, Berlin, Heidelberg.

[10] Groenewold, H. J. (1946). On the principles of elementary quantum mechanics.

In On the Principles of Elementary Quantum Mechanics (pp. 1-56). Springer,

Dordrecht.

[11] Cattaneo, A. S., & Indelicato, D. (2004). Formality and star products. arXiv

preprint math/0403135.

[12] Hall, B. C. (2013). Quantum theory for mathematicians (Vol. 267). New York:

Springer.

[13] Moyal, J. E. (1949, January). Quantum mechanics as a statistical theory. In

Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 45, No.

1, pp. 99-124). Cambridge University Press.

110



[14] Gotay, M. J. (1980). Functorial geometric quantization and Van Hove’s theo-

rem. International Journal of Theoretical Physics, 19(2), 139-161.

[15] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., & Sternheimer, D. (1978).

Deformation theory and quantization. I. Deformations of symplectic structures.

Annals of Physics, 111(1), 61-110.

[16] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., & Sternheimer, D.

(1978). Deformation theory and quantization. II. Physical applications. Annals

of Physics, 111(1), 111-151.

[17] Kontsevich, M. (2003). Deformation quantization of Poisson manifolds. Letters

in Mathematical Physics, 66(3), 157-216.

[18] Bordemann, M. (2008). Deformation quantization: a survey. In Journal of

Physics: Conference Series (Vol. 103, No. 1, p. 012002). IOP Publishing.

[19] Dito, G., & Sternheimer, D. (2002). Deformation quantization: genesis, deve-

lopments and metamorphoses. Deformation Quantization (Strasbourg, 2001),

IRMA Lect. Math. Theor. Phys, 1, 9-54.

[20] Zachos, C. K., Fairlie, D. B., & Curtright, T. L. (2005). Quantum mechanics

in phase space: an overview with selected papers.

[21] Scholz, E. (1992). Riemann’s vision of a new approach to geometry. In

1830–1930: A Century of Geometry (pp. 22-34). Springer, Berlin, Heidelberg.

[22] Aschieri, P., Dimitrijevic, M., Kulish, P., Lizzi, F., & Wess, J. (2009). Non-

commutative spacetimes: symmetries in noncommutative geometry and field

theory (Vol. 774). Springer Science & Business Media.

[23] Grosse, H., & Wohlgenannt, M. (2006). Noncommutative QFT and renormali-

zation. In Journal of Physics: Conference Series (Vol. 53, No. 1, p. 764). IOP

Publishing.

[24] Misner, C. W., Thorne, K. S., & Wheeler, J. A. (2017). Gravitation. Princeton

University Press.

[25] Doplicher, S., Fredenhagen, K., & Roberts, J. E. (1995). The quantum struc-

ture of spacetime at the Planck scale and quantum fields. Communications in

Mathematical Physics, 172(1), 187-220.

[26] Becker, K., Becker, M., & Schwarz, J. H. (2006). String theory and M-theory:

A modern introduction. Cambridge University Press.

111



[27] Wess, J., & Bagger, J. (1992). Supersymmetry and supergravity. Princeton

university press.

[28] Ortin, T. (2004). Gravity and strings. Cambridge University Press.

[29] Freedman, D. Z., & Van Proeyen, A. (2012). Supergravity. Cambridge univer-

sity press.

[30] Rovelli, C., & Vidotto, F. (2014). Covariant loop quantum gravity: an elemen-

tary introduction to quantum gravity and spinfoam theory. Cambridge Univer-

sity Press.

[31] Castellani, L. (2000). Non-commutative geometry and physics: a review of

selected recent results. Classical and Quantum Gravity, 17(17), 3377.

[32] Dowker, F. (2013). Introduction to causal sets and their phenomenology. Ge-

neral Relativity and Gravitation, 45(9), 1651-1667.

[33] Sorkin, R. D. (1994). Quantum mechanics as quantum measure theory. Modern

Physics Letters A, 9(33), 3119-3127.

[34] Dowker, F., & Kent, A. (1995). Properties of consistent histories. Physical

Review Letters, 75(17), 3038.

[35] Hawking, S. W. (1979). Euclidean quantum gravity. In Recent developments in

gravitation (pp. 145-173). Springer, Boston, MA.

[36] Weinberg, S. (1979). Ultraviolet divergences in quantum theories of gravitation.

In General relativity.

[37] Maldacena, J. (1999). The large-N limit of superconformal field theories and

supergravity. International journal of theoretical physics, 38(4), 1113-1133.

[38] Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes.

Fortschritte der Physik, 61(9), 781-811.

[39] Heisenberg, W. (1993). Letter of Heisenberg to Peierls (1930), Wolfgang Pauli,

Scientific Correspondence, Ed. Karl von Meyenn.

[40] Snyder, H. S. (1947). Quantized space-time. Physical Review, 71(1), 38.

[41] Seiberg, N., & Witten, E. (1999). String theory and noncommutative geometry.

Journal of High Energy Physics, 1999(09), 032.

112



[42] Landi, G. (2003). An introduction to noncommutative spaces and their geome-

tries (Vol. 51). Springer Science & Business Media.

[43] Gracia-Bondia, J. M., Varilly, J. C., & Figueroa, H. (2013). Elements of non-

commutative geometry. Springer Science & Business Media.

[44] Szabo, R. J. (2003). Quantum field theory on noncommutative spaces. Physics

Reports, 378(4), 207-299.

[45] Connes, A. (1994). Noncommutative geometry. San Diego.

[46] J. Madore. An introduction to noncommutative differential geometry and physi-

cal applications. Lond. Math. Soc. Lect. Note, 2000.

[47] Connes, A., Douglas, M. R., & Schwarz, A. (1998). Noncommutative geometry

and matrix theory. Journal of High Energy Physics, 1998(02), 003.

[48] Gayral, V., Gracia-Bondia, J. M., Iochum, B., Schücker, T., & Várilly, J. C.
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[56] Aschieri, P., Jurčo, B., Schupp, P., & Wess, J. (2003). Noncommutative GUTs,

standard model and C, P, T. Nuclear Physics B, 651(1-2), 45-70.
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Beogradu otpočinje 2015. godine pod rukovodstvom prof. dr Voje Radovanovića.
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