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Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes
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The full symmetry groups for all single-wall and multiwall carbon nanotubes are found. As for the single-
wall tubes, the symmetries form non-Abelian nonsymorphic line groups, enlarging the groups reported in the
literature. In the multiwall case, any type of line and axial point groups can be obtained, depending on
single-wall constituents and their relative position. The isogonal symmetry is related to the macroscopic tensor
properties of the nanotubes. The optical activity is studied within this framework, and a detailed classification
of the possible nanotube-based optical devices is given. At the microscopic level, full symmetry is used to find
general forms of the characteristic functions of the nanotubes. In particular, the stability of the double-wall
configurations and the possibility of chiral currents are discussed. Several other consequences are discussed:
guantum numbers and related selection rules, phonon spectra, etc. In particular, the bands of the zigzag and the
armchair tubes are generally expected to be fourfold degeng&i&63-18209)06427-9

[. INTRODUCTION lattice are transferred into the tubular geometry, and those
which remain symmetries of the rolled up lattice form the
Single-wall carbon nanotubes are quasi-one-dimensionalorresponding line group. In addition to the rotational, trans-
(1D) cylindrical structure$;® which can be imagined as lational, and helical symmetries, the horizontal axes @od
rolled up cylinders of the 2D honeycomb lattice of the singlezigzag and armchair tubesirror and glide planes are also
atomic layer of crystalline graphite. Frequently, severalpresent. The symmetry groups of multiwall nanotubes are
single-wall tubes are coaxially arranged, forming a multiwallstudied in Sec. I1B. Note that among these there are also
nanotube. Since their diameters are sni@diwn to 0.7 nmy  tubes that are not translationally periodic.

in comparison to their length@ip to tens ofum), the theo- Many of the physical properties of the nanotubes are de-
retical model of the extende(e., infinite, and hence with- termined by their symmetry. First, for the properties charac-
out caps at the enfimanotube is well justified. terized by the second-rank tensdttse general form of these

The symmetry of the nanotubes is relevant both for deefiensors has been already folifyda detailed analysis is en-
insight into the physical propertiégguantum numbers, selec- abled. The study of the optical activity, presented in Sec. Ill,
tion rules, Optica| activity, Conducting propertiesl bund to ylelds an exhaustive list of the different types of Optical ac-
simplify calculations. As for single-wall tubes, symmetry tivities of the nanotubes, with the optical axes and corre-
studies started with the classification of the graphene tubegPonding examples. These results might be a hint of the ex-
according to fivefold, threefold, or twofold axes of the re- Perimental setups in the context of the optical nanodevices.
lated G, molecule? and gave just a part of their point-group Further, the potentials for various physical problems may be
symmetry. The translational periodicity was discussed in thénodeled with the use of symmetry. The general forms of
context of the nanotube metallic propertteBinally, the he- such potentials are derived in Sec. IV; these are applied in a
lical and rotational Symmetries were fOL?r?dthe screw axis discussion of the relative pOSitionS of the Components in the
was characterized in terms of tube parameters7 as well as ﬂﬁ‘@ultlwall tubes and the structure of the local current denSity.
order of the principal rotational axisThe first goal of this Some other related results are discussed in Sec. V.
paper is to complete this task, giving the full geometric sym-
metry of the extended single-wall nanotubes. Due to their 1D Il. SYMMETRY OF NANOTUBES
translational periodicity, the resulting groups are the line
groups®® it appears that only two line-group families are  The line group'* contain all symmetries of the systems
relevant: the fifth for the chiral, and the 13th for the armchairPeriodical in one direction, and usually are used in the con-
and zigzag nanotubes. text of stereoregular polymers and quasi-1D subsystems of

The symmetry of the double-wall and multiwall tubes has3D crystals. It immediately follows that, being periodic
never been seriously studied, despite their importance forlong its axis, any extended single-wall nanotube has the
applications in nanodevices. Here we present an exhausti&mmetry described by one of the line groups.
list of symmetries of such tubes. Depending on the single- All the line-group transformations leave the tube axs (
wall constituents, and their relative arrangement, the result@Xis, by conventioninvariant. Consequently, such a trans-
ing nanotube symmetry may be either a line group or arformation (P|t) (Koster-Seitz symbglis some point-group
axial point group. operationP preserving the axis, followed by the translation

In Sec. Il at first the necessary notions on the line group#or t along thez axis. Action on the point=(x,y,z) gives
are briefly summarized, and the relevant notation is intro{P[t)r=(x",y’,z"), with
duced. Then, in Sec. Il A, the line groups of all the nanotubes
are derived: the familiar symmetries of the original graphene<’ =P, x+P,yy, y'=Pyx+Pyy, 2z'=P,z+t. (1)
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FIG. 1. Symmetries of the honeycomb lattice. For the ch{Bg), zigzag(6,0), and armchait6,6) tubes the chiral vectors are depicted
by the arrows. Th& andU’ axes pass through the circlgrpendicular to the honeycomlin the zigzag and armchair cases, the bold lines
o, and o, represent the vertical mirror and glide planes of the lattice, being orthogoﬁathne planes parallel to are denoted asy, and
oy, U is the intersection of the mirror planes, add that of the glide planes.

Here,Pij are elements of the>33 matrix of P in the Carte- tice is rolled up in such a way that the chiral Veckar

sian coordinates; those couplizgo the other axes vanish. —n,a,+n,a, becomes the circumference of the tutits
Such point operations are called axial, and they form sevep i 3rd érigin matoh The tubes 1,.0) and fy.ny) are

types ofdthe axizl poin_t group'sz:.Cnr,] SZ& C“fh 'hC“V: D.“' | called zigzag and armchair tubes, respectively, while the oth-
Dna, andDyp, wheren=1,2,... is theorder of the principal o/ are known as chiral tubes. The chiral anglef the

rotational axis. tube is th le bet the chiral veeand th
There are infinitely many line groups, since there is non_ano ube is the angle between the chiral vectan €

crystallographic restriction on the order of the principal axis,zigzag directiona;. When 0< < /3, all the tubes are en-
and they are classified within 13 families. Each line group iscountered; in fact, for the zigzag and armchair nanotubes
a producﬂ_ =Z7P of one axial point grouf and one infinite equals 0 andr/6, respectively, and between these chiralities
cyclic groupZ of generalized translation@crew axisT,, ~ lay chiral vectors of all the chiral nanotubes with>n,
pure translation =T, or glide planeT,, generated by the =0 [the tubes fi,n,), with 7/6<6<m/3, are their optical

transformations (Cgl(n/g)a), (lla), and (o a/2), isomers, as will be discussed later .
respectivelyt®). Thus, to determine the full symmetry of a There aren=g(n,,n,) (G is the greatest common divi-
nanotube, both of these factofsaving only the identical son honeycomb lattice points laying on the chiral vector.
transformation in commanshould be found. The point fac- The translations fosc/n in the chiral direction on the tube
tor P should be distinguished from the isogonal point groupa@Ppear as the rotations forsz/n (s=0,1,...) around the
P, of the line group'* only for the symorphic groups when tube axis. Thus the principal axis of ordeis a subgroup of
Z=T, these groups are equal; otherwideis not a subgroup the full symmetry of the tuber(;,n,):
of L. Due to the conventiolt 27/q is the minimal angle of
rotation performed by the elements of the line grdiighe Cn,  n=G(ny,ny). @
screw gxis is nontrivial it_ is_ followed by some fractional Obviously, n=n, for the zigzag £,,0) and armchair
translatloo,.as well as by its |Isogonal. point group. (ny,n;) nanotubes.

The easiest way to determine the line graupf a system To the primitive translation of the tube corresponds the

. . . (1) .. _ R N N ) ) ]
is first to find the subgrouf'*’, containing all the transla vector a=a,a, + a,a, in the honeycomb lattice, being the

tions and the rotations around the principal afiicluding . ) .
the ones followed by fractional translationdHaving the ~Minimal one among the lattice vectors orthogonal oato
Therefore,a; anda, are coprimes, yielding

same screw axisT( is a special cageas L, and the same
ordern of the principal axis, this subgroup?=T{C,, is the

maximal subgroup from the first line-group family. Then the a=— 22t Ny 2Nt Na-

symmetries complementing™ to L should be looked for. nR nR %

To completeZ, it should be checked if there is a vertical

glide plane. AlsoC,, is to be complemented #® by eventual - \/3(n§+ n§+ niny)

additional point-group generators; at most two of them are to a=lal= R 8o, &)

be chosen among the mirror planes, horizontal rotational _ o _
axes of order 2 or rotoreflection axigefining pure rotations With R=3 if (n;—ny)/3n is integer andR=1 otherwise.

that are already encountered@). For the zigzag and armchair tubas \/§a0 anda=a,, re-
spectively. The elementary cell of the tube is the cylinder of
A. Single-wall nanotubes the heighta and areaS,=alc|; it contains S,/S,=2[(n}

2 -
Elementary cell of the hexagonal honeycomb latti€kg. Nzt nng/NR] elementary graphene ceflsSo, the trans

i - - lational groupT of the nanotube is composed of the elements
1) is formed by vectorsa; and a, of the length a, (1ta), t=0,+1
— R _ 2 f — 4, ...
=2.461 A ; within its areas, = Nl 289 theire are two carbon The encountered symmetrigsandC,, originate from the
atoms at positionsg; +a,)/3 and 2@;+a,)/3. The single- honeycomb lattice translations: on the folded lattice the
wall nanotube 1,n,) is formed when the honeycomb lat- translations along the chiral vector become pure rotations,
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while those along remain pure translations. These elements ~Besides the translations, there are other symmetries of the
generate the whole nanotube from the sector of angitn2 honeycomb lattice(a) perpendicular rotational axes through
of the elementary cell, with [ZniJrnngnlnz)/an] el- the centers of the hexagofsf order 6, through the carbon
ementary graphene cells. This number is always greater thifoms(of order 3 and through the centers of the edges of the
1, pointing out that not all of the honeycomb lattice transla-"€xagongof order 2; (b) six vertical mirror planes through

tions are taken into account. The missing translations arf'€ centers of the hexagons formed by the attanshrough
the atomg and (c) two types of vertical glide planes—

connecting the midpoints of the adjacent edges, and the mid-
points of the next to nearest-neighboring edges of the hexa-
gons.

Among the rotations, only those far, leaving invariant

neither parallel with nor orthogonal onty on the rolled up
sheet they are manifested as rotati¢ios fraction of 2z7/n)

combined with translation€or fractions ofa), yielding the
screw axis of the nanotube. Its genera[tﬁm(n/q)a] corre-

sponds to the vectar=r(c/q)+n(a/q) of the honeycomb o 4yis ofa i.e., thez axis of the tube, remain the symmetry
lattice, which, together with the encountered translationSys he rolled up lattice. Thus two types of horizontal second-
generates the whole honeycomb lattice. Thu=an be Ch_O- order axes emerge as Symmetries of any nanotﬁhye 1)

sen to form the elementary honeycomb cell together with the), passing through the center of the deformed nanotube
minimal lattice vectorc/n along the chiral direction. The hexagons; antl’, passing through the midpoints of the ad-

honeycomb cell are§, must be the product d|/n and the  jacent atoms. Moreover, the first of these transformations is
lengthna/q of the projection of onto a: a|6|/q— J3a2/2 obtained when the second one is followed by the screw axis
- - 0 .

O — r !
This gives the ordeq of the screw axis. Finally, is found* generator:U = (Cq|(n/q)a)u’. Thus, any of them, say,
from the condition that projections afon thezi1 andéz are complements the principal tube 3 to the dihedral point

. ) . . groupD,,. This shows that at least the line groﬁ[;Dn (from
coprimes. This completely determines the screw axi he fifth family) is the symmetry group of any nanotube
(Fix]=x—[x] is the fractional part of the rational number Y y y group y '

x, and ¢(m) is the Euler function, giving the number of Note thatU’ just permutes the two carbon atoms in the el-
. } ementary honeycomb cell, meaning that all the honeycomb
coprimes less tham):

atoms are obtained from an arbitrary one by the translations
) 5 and the rotatioiJ’. Analogously, the elements of the group
ni+nin;+n; TaDn generate the whole nanotube from any of its atoms.
nR ' Action (1) of the group elements on the pointy
=(po,®0,Zo) (cylindrical coordinatesgives the points

Z=Ty, Q=2

nl—nz) n (nl—nz)“’(r‘l’")1

(3—2 +—
Ny Nl n

I'ooo

n
rtsu=(cg‘c§u“ taa

(4)

For both the zigzagrn(,0) and armchairr{,n) tubes,q=2n . (6)

andr=1, i.e.,Z=Tj3,. Note thatq is an even multiple oh.
It is equal to the number of the graphene cells in the elementu=0,1; s=0,...n—1; t=0,=1,...); hereafter thex axis
tary cell of the tubes;/S;. Thereforeg/n is the number of is assumed to coincide with thé axis. Using Eq(5), it can
the graphene cells in the sector, and is therefore alwayBe shown that the coordinates of the first at@usitioned at
greater than 1; this means that all the single-wall tubes hav§(51+ 52) on the honeycombare
nonsymorphic symmetry groups.
To resume, the translational symmetry of the honeycomb D ni+n. ni—n
. . c 172 M=y
lattice appears as the grou;Sl):T[]Cn of symmetries of the I 500= 5,277—72, ao)
nanotube, withq and r given by Egs.(4). Its elements ngk yengr

re~s — —
(CqCrltn/qa) (t=0,%1,..., s=0,...n—1) generate the g psiituting these values into E@), the coordinates of all
whole nanotube from any adjacent pair of the nanotube atsiner atoms are obtained.

oms. The gr_oup.(l) _contains all the symmetries previously Rolling up deforms any plane perpendicular onto the
considered in the literatufe®’3 Note that the screw axis o -+ .
graphene sheet, unless it is either parallel vattithen it

used here is somewhat different to the previously reporte ) -

ones, due to the conventidhWith this convention Z/q is ~ Pecomes a horizontal planer orthogonal toc (giving a

the minimal rotation(followed by some fractional transla- vertical plang. Thus only tubes with chiral vectors parallel
tion) in the groupt* providing thatq is the order of the or'orthogqnal to the enu_merated mirror and glide planes ob-
principal axis of the isogonal point group. This explains why!&in additional symmetries of these types. The zigzag and
q is equal to the number of graphene cells contained in th&'mchair tubes are immediately singled out by simple in-
elementary cell of the tube. Note that the translational perioP€ction. Only in these cases is the chiral vector in a perpen-

a and the diameteD of the tube are determined by the sym- dicular mirror plane; when the sheet is rolled up, this plane
metry parameterg andn: becomes the horizontal mirror plang of the corresponding

nanotubes. Enlarging the previously found point symmetry
group D,, by o, the point groupD, of the zigzag and

a= / 34 a D= E /ana 5) armchair tubes is obtained. Finally, taking into account the
2Rn"% T 2 0 generalized translatior(g), the full symmetry groups of the

t S n
— u 1 _ u _
po,( 1) (,Do+27T(q+n ,( 1) Zo+tqa

()
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FIG. 2. Symmetries of the single-wall nanotubé&), (6,0, and(6,6). The horizontal rotational axdd andU’ are symmetries of all
the tubes, while the mirror planesr{ and o},), the glide planes.,, and the rotoreflectional plang/, are symmetries of the zigzag and
armchair tubes only. The line groups aggD, for (8,6), and T1,Dg, for the other two tubes.

single-wall nanotubes arébesides the factorized notation, Téq/n)—fcn (although isomorphic, these groups are equal
the international symbol is also given only wheng=2n andr=1, i.e., only for the zigzag and

armchair tubes
L chira™ T;Dn: L szzv

2n,+n; @(2ny+ny/nR)—1 B. Double-wall and multiwall nanotubes
R\ nr a=nz The symmetry of a multiwall nanotube now can be found
p=qFr| — onTn , (83 as intersection of the symmetry groups of its single-wall con-
d 12 stituents. This task will be considered for double-wall tubes
at first, and then the results are straightforwardly generalized
L armehair= L zigzag= T2nDnh=L 2N, /mem (8D to the multiwall ones. The intersection of the line groups
=ZP andL’'=Z'P’ has the formL,=Z,(PNP’"). Thus the
Their isogonal point group$ are Dy and D,y intersection of the point groups is looked for independently

The line groupT%nDnh (13th family) contains various new of the generalized translations.

symmetriegFig. 2), all combinations of the ones mentioned  As derived in Eq(2), the tubes if;,n,) and (h;,n5) are
above. In fact, whewr,, has been added to the grolig,D,,  invariant under the rotations around their axes for the mul-
the other mirror and glide planes parallel to and orthogonatiples of the angles 2/n and 2z/n’ [n=G(n;,n,) andn’
ontoc are automatically included in the symmetry groups of=G(n},n5)], respectively. The tube composed of these co-
the zigzag and armchair nanotubes. These transformatiorially arranged components is invariant under the rotation
can be seen ag;, followed by some of the elements from for 27/N, the minimal common rotation of the components,
T%nDn. At first, there aren vertical mirror planegone of and its multiples. Thus the principal axis subgroup of the
them iso,=o,U, and the others are obtained by pure rota-double-wall  nanotube is Cy, with N=g(n,n’)
tions; by the previous convention, the, plane is the =G(n;,n,,n7,n5). The horizontal second-order rotational
xy-coordinate plane Bisecting the mirror planes, there are axisU (andU’) is also symmetry of all single-wall nano-

glide planege.g., the productd.|) = (C,n|2a) o, ], and the tubes. Nevertheless, such an axis remains the symmetry of

vertical rotoreflection axis of orderr2(generated byr, U’  the composite tube only if it is common to all of the compo-
=C,,0y,, the reflection in thes| plane, followed by the nents, and then the point symme’gryD&,. Obviously, n‘.a
rotation for 7r/n). nanotube contains at least one chiral component, Byeis

. - . its maximal point symmetry. Only tubes composed exclu-
The vectors obtained from by the rotations from the P y y y b

. ) sively of zigzag and armchair single-wall components may
point symmetry groufCe, of the honeycomb lattice, produce 1,,e additional mirror and glide planes, as well as a rotore-
the nanotubes which are essentially the same one, onE(

i ectional axis. Analogously to the horizontal axis, these are
looked at from the rotated coordlnzzte systems. NeverthEIeS§ymmetries of the whole tube only if they are common for all
the vertical mirror plane image of (e.g., in the vertical of the componentsthe rotoreflectional axis appear only if
plane bisecting the angle af; and a,) produces the tube the horizontal planes, coincides.

which can be considered as the same one only in the coor- After the point symmetries are thereby completely deter-
dinate system with the opposite sihe coordinate transfor- mined, the more difficult study of the generalized transla-
mation involves the spatial inversipnThus tubes 1t;,n,) tional factorZ, remains. Note that, at first, it may be com-
and (h,,n;) are optical isomers. Only the mirror image of pletely absent. Suppose that double-wall tube has the
the zigzag and armchair tubes is equivalent to the originaliranslational periodA. If the translational periods of its con-
and these tubes have no optical isomers. This is manifestestituents area anda’, thenA is obviously the minimal dis-

in the optical activity, as will be discussed in sec. Ill. Con-tance being multiple both oA and ofa’: A=aca=a'a’,
cerning the symmetry groups, ‘|If{4Cn corresponds to the wherea anda’ are positive coprimeg&o assure minimality
tube (nq,n,), then the group of the tubeng,n;) is  Thus the double-wall tube is translationally periodic if and
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TABLE I. Symmetry of the multiwall zigzag and armchair tubes. For the periodic tubes, the line groups
(and familieg and the isogonal groups are in the “odd” columns if all the ratié, n’/N, ... are odd, and
in the “even” columns otherwise. The point groups of the tubes with both zigzag and armchair components
are in the last column. In the first column the relative positions of the component tubes are characterized by
the coinciding symmetry elementiseside the common principal axis in the general positiblere U,U")
denotes the horizontal axis, which is tbeaxis in some of the constituents, and thé axis in the remaining

ones(to exclude the additional mirror or glide planeslso, (oy,,0y,) is the plane, which igr,, in some of
the constituentgwith evenn, necessarilyand oy, in the remaining tubes; in the incommensurate case, the

same groups are obtained whef planes are in common.

Relative Line group Isogonal group Point
position “Odd” “Even” “Odd” “Even” group
General TinCn 1) TCy 1 Con Cn oN
o ToChn - @) TCpn 3 Cann Cn Chn
oy LENE ® TChy (6) Cany Crv Chv
oy TonCrv 8 TCry 0 Cony Cnv Cn
(U,u) ToDn (5) TDy (5) Don Dn D
Th,0y ToDnn (13 TDyn (11) Danh Dnn Dnn
oh,0y TonDnn (13 TcCun (12) Dannh Dnn Cun
(on,01) T5nChn (4) TSon 2 Conn SN Son
(on,0p), oy T5nDnn (13 TDng 9 Dannh Dna Dna
(on,0p), oy TonDnn (13 TS (10) Dann Dy Son

only if the translational periods of its constituents are com-

mensurate, i.e., only whea'/a is rational. Conversely, if

a'/ais an irrational number, the composed tube is not trans

lationally periodic, and, is trivial (identical transformation

only); the total symmetry reduces to the already found point

group.

In the commensurate case it remains to examine if th
translational group can be refined by a screw axis, common
to all of the single-wall components. The task is to determine

the screw axis generatoC§|F) with maximalQ, appearing

in the both group& =T[]Cn andL’ =T;’,Cn/ . Thus we look
for the values ofQ, R and F (in accordance with Ref. 13
such that there exist integetss, t', ands’ (enumerating the
elements ol andL’) satisfying

(CYIF)=(CyChlth)=(Cg, Cp |t'f")

ith F N A, f n f’ ! 9
wi =—Af=—a, =—a.

Q q q’
Obviously, the fractional translatidh is multiple F=tF* of
the minimal common fractional translatid#*, implying A
=(Q/N)tF*. Analogously toA, the translatiorF* is found
as the minimal distance being multiple bothf@ndf’; thus
it is given by the unique solution in the coprimésand ¢’

!

R_ ~ra'r~s_ ~r'ar~s
CQ—Cq Cn—Cq, C

n’-

(10
The minimal r for which the last equation is solvable ¢
and s" is 7=®/G(ran’/N—r"a’'n/N,®). Finally, Q
=Ng(ran'/N—r"a’n/N,yJqq’/nn’), andR is easily found

érom Eq. (10).

All these results are immediately generalized to the mul-
wall tubes. Note that the generalized translations and the
principal rotational axis of the multiwall nanotube depend
only on the types of their single-wall components. Con-
versely, the appearance of the mirror and glide planes and
the horizontal axes in the common symmetry group is addi-
tionally determined by the relative positions of these compo-
nents.

It remains to give the summary of the symmetry groups of
the multiwall tubes. If at least one of the single-wall constitu-
ents is chiral, then in the commensurate case there are two
possibilities:TgCN, corresponding to the general mutual po-
sition; andTSDN in the special mutual positions with com-
mon U axis. Analogously, the tube built of incommensurate
components has a symmetry described by the point groups
Cy or Dy. If the nanotube is built of zigzag and armchair
single-wall tubes(,0) [or (n,n), (n’,0) or (n’,n’)],..., the
order of the principal rotational axis N=g(n,n’,...). If
the tube contains at least one single-wall tube of both types,

of the equatiorF* = ¢f=¢'f’. Since the translational peri- no translational periodicity appears and its symmetry is de-
ods of the single-wall components are multiples of their fracscribed by a point grougTable ). On the other hand, for a

tional translationsA is multiple of F*, i.e., A=®F*. With
the help of number theory, it can be shd®that only the
tubes with the sam®& may be commensurate; then= ¢’
=4q'/n’G(g/n,q’'/n"), a’'=d=\qg/n/G(q/n,q’'/n’) and
®=qq'/nn’. ThusQ=®N/7, and the minimal is looked

tube composed of components of the same tigither zig-
zag or armchajr the translational period is equal to that of
the components. Two different situations may occur: if all
the integersi/N, n’/N. .. are odd“odd” case), the trans-
lations are refined by the screw axigy; otherwise, if at

for to provide the finest screw axis. The translational part ofeast one of these integers is ewgrven” case, no screw

Eq. (9) immediately shows that=7a’ andt’'=ra. With
this value substituted, the rotational part of E9). gives the
equations

axis emerges. The analysis of the special arrangements of
constituents with common horizontal axes, mirror or glide
planes, increasing the symmetry of the total system is sum-
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FIG. 3. Optical activity of carbon nanotubes. The optical afeish the direction of the beamare indicated by the arrows. For the
double-axis devices, the axes’ plane is shown; initially, field vectarsows orthogonal to the aXeare polarized in this plane. The
out-of-plane arrows indicate the rotatédr the anglesa and B) field vectors of the outgoing beams. The positions of the axes and the
relative values otx and B in (a)—(d) depend on the symmetry group of the tube, and they are specified in the text.

marized in Table I. Note that according to the various ar-ties, and each of them will be discussed. It should be stressed

rangements of the components, any of the line and axiahat the most general symmetry-constrained tensor forms are

point groups may be the resulting symmetry for the commenused, but due to some other physical reasons, the tensors

surate and incommensurate components, respectively. Somgay have an even more specific form. For example, the plau-

examples are given in Sec. lIl. sible assumption that the tenseris determined by the di-

electric permeability of the graphite results in the disappear-

ance of additional tensor components. Discussion of this

question is postponed to the end of the section, in order to
As the symmetry classification of the single-wall and mul-Present the most general results, independent of this assump-

tiwall carbon nanotubes has been completed, the general méon (thus the derived forms refer generally to the symmetri-

trix forms of the symmetrical polar and axial second-rankcal second-rank tensors

tensors for systems having line-group symmétrgan be

used to predict many of the physical properties. Here the A. Single-wall tubes

optical activity of the isolated carbon nanotubes will be ana- : : -

lyzed in order to select the nanotubes relevant for further The general fqrm of the tensors of dielectric permeability

yze

experiments on optical activity and propose the characteristifq,“’].d optical activity for the symmetry grourTs'an of t_he

experimental setups. To avoid the influence of the other efgh'ral tbes have th_e same diagonal foffar 9> 2, which

fects, birefringence and anisotropy of absorption, only théefers to the all realistic tubgs

activity along the optical axes is discusg#iie birefringence

Ill. OPTICAL ACTIVITY

in thin films of aligned carbon nanotubes has been already exx 0 0 ax 0 0
reported®). Different types of activity are illustrated by ¢=| 0 &, O |, A=| 0 a, 0 |. (11
double-wall tubes with a realistic interlayer distaht®of 0 0 e 0 0 a

¥4 77

approximately 3 A | giving examples of potentially inter-

esting nano-optical devices; their metallic or semiconductokince A does not vanish, the chiral tubes are expected to be
properties’ and commensurability are emphasized. Since theyptically active. Two equal diagonal elementssisingle out
optical activity decreases for nanotubes with largerne tube axis as the optical axis. The polarization plane is
diametert® tubes with diameters up to 3 nm are consideredfotated[pig_ 3(@)] through an anglex proportional toa,,;

In the optically active medium, the polarization plane of a(the highly oscillatory dependence af, on the frequency of
linearly polarized light beam incoming along the optical axisthe external fielt may be of additional experimental inter-
with the ort k=(k, ky,k;), is rotated through an angle esy. As already mentioned in Sec. Il A, the tubes, (n,)

Zj jkikjaj; per unit length;a;; are elements of the optical gng (,,n,) are the optical isomeréhaving screw axes of
activity tensorA, an axually symmetric second—rank tensor. gpposite sigh and thus rotate the polarization of incoming
Thus, from the general axial tensors of the line grotfitie  fielq through equal angles but in opposite directions. On the
symmetric part is to be taken to obtain the formAfThe  giner hand, single-wall zigzag and armchair nanotubes are

general form of the dielectric tenser, a polar symmetric oPticaIIy inactive, since their axial tensors vanish.
second-rank tensor, is used to predict the shape of the optica

indicatrice and thereby the spatial orientation of the optical
axes of a particular nanotub®When two eigenvalues of
coincide, the indicatrice is rotational ellipsoid and the tube Only a part of multiwall nanotubes has symmetrids-
axis is the only optical axis. On the other hand, when all theived in Sec. Il A compatible with the optical activity; these
eigenvalues ot are different, two optical axes emerge; al- cases will be analyzed and illustrated here. In general posi-
though their exact spatial directions may be found only aftetions, the symmetry group of a double-wall tube belongs
the values of the permeability tensor elements are knowrgither to the first line-group familywhen the translational
pure symmetry arguments leave only two or three possibiliperiods of the constituents are commensurateo the rota-

B. Double-wall tubes
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tional group familyCy (when the periods are incommensu- exx O 0 a,, 0 O

rate. In both cases the optical activity is not forbidden by _ c e A=| 0 a, a (13)
symmetry. Still, it can be prevented by increased symmetry weoomyz vy vzl

in the special spatial arrangements of the single-wall con- 0 &y, &4 0 ay, a;

stituents. The additional horizontal axes cannot cause th'r?he system has two optical axes and two situations are pos-
effect and therefore, tubes with at least one chiral compogjp|e: either the axes are bisected by yteeplane[Fig. 3(b)

nent, i.e., chiral-chiral(CC), chiral-armchair (CA), and ¢ = 8] when the polarization of beams along them is
chiral-zigzag(CZ) components are always active and have,gisieq through the same anglesd in the same directions

optical isomers. Only the zigzag-zigza@Z), armchair- o the axes are in thgz plane when the rotations are ex-

armchair(AA), and armchair-zigzagAZ) components 10Se pectaq, in general, to be differeffig. 3(c) for independent
activity when their single-wall constituents are in relative , ;4 ).

positions with coinciding mirror or glide planes. Otherwise, ¢ the considered tubes are in a special position with a

these tubes may be active, despite the inactivity of their com- . . . 1 .

ponents and the absence of the optical isomers. In addition @/€Served vertical mirros,, or glide plane Gul2) (this ex-

this general result, a more subtle discussion on the spati&ludes the tubes with chiral componentise corresponding

position of the optical axes is performed. To this end, thre€YMmetry groups ar@C,, (containing a mirror planeor

classes of nanotubésiffering by the order of the rotational 1cC1 (containing a glide planein the translationally peri-

and screw axisare considered separately, at first in a generaPdic case, anc,, when the components are incommensu-

position and then in different special positions. rate. In all these cases the relevant tensors are of the form
Let us first consider optically active tubes without rota- (Where thexz plane has been taken as the symmetry plane

tional symmetry; this includes the tubes having in general

o . . 0 0 a 0
position either the pure translational symmetryfcommen- Exx Exz Xy
surate constituents; e.g., ZZ and AA, witm’ even andN e=| 0 &y, O |, A=[ay 0 ay]. (14)
=1), or the trivial groupC, (incommensurate components; ey, 0 &, 0 a, O

e.g., AZwithN=1). Realistic metallic-metallic pairs are AA ) _ o
(6,6—(11,12, (7,7—(12,12, CA (11,2—(12,12, and CC Analogously, when the horizontal mirror planes coincide, the
(22,4—(26,1) (commensurate and ZA (9,0—(10,10, Same pairs have eithdiCy, (if commensurateor Cy, (if
(15,0—(14,14, CZ (11,2—(21,0, CA (13,4—(14,14, and incommensurajesymmetry. The general tensor forms are
CC (10,4—(19,4 (incommensurate The commensurate

semiconducting-semiconducting nano-optic devices belong- exx exy 0 0 0 ag

ing to this class are the ZZ paif40,0—(19,0 and (11,0- e=|e&xy &y 0|, A=[ O 0 ay]. (15)
(20,0 and the CC paif7,3—(14,6, while the incommensu- 0 0 & a. a 0

rate ones are the CC pai6,4—(17,1), the CZ pair(9,2)— 2 Xz vz

(19,0, and the ZC pair(10,0—(17,3. Examples of the The form of thee in Egs.(14) and(15) allows two possi-
incommensurate metallic-semiconducting optically activebilities for the positions of the optical ax¢this depends on
double-wall tubes, belonging to this class, are the AZ pairghe concrete values;;): either both of them are in the sym-
(5,9-(17,0, (6,6—(19,0, and (8,9—(23,0, the CC pair metry plane, or this plane bisects the angle between the op-
(24,9-(35,6), the CZ pair(25,7—-(38,0, the ZC pair(27,0—  tical axes. It is easy to see that only in the second case can
(31,8, and the AC pair(17,17—(30,13, while the CC pair the tubes be optically active: if, for the beam incoming along
(21,9—(28,12 is an example of the commensurate metallic-one of the axes, the rotation of the polarization is clockwise,
semiconducting optically active tube. Finally, the incommen-it will be counterclockwise through an equal angle for the
surate semiconducting-metallic devices are the ZA-typdeam incoming along the other aXiee Fig. 8) for a tube
pairs: (10,0—(11,1, (14,0—(13,13, (17,0—(15,15, the with o, symmetry, and Fig. @) for a tube witho, symme-

CC pair(6,4—(13,7), the CZ pair(8,6—(21,0, the ZC pair try, both with 8= —«a].

(10,0—(15,6, and the CA pair(16,2—(15,15, while the Finally, when the pairs preserve both horizontal and ver-
commensurate one is the double-wall tube of CC typetical mirror or glide planes, their symmetry groupliB;, or
(14,6—(21,9. T.Cyp for ZZ and AA pairs, andD,,, for ZA pairs. All of

To the T and C; groups correspond the most generalthem have tensors of the following forms:
forms of the tensors and A:

6 0 O 0 0 0
Exx Exy €xz Ayx axy Ay, e= 0 gyy 0 , A= 0 0 ayZ i (16)
e=| &xy &y &yz|, A=|ay ayy ay|. (12 0 0 &, 0 a, O

&z Ey; € a, a,, a . . . .
Xz Tyzo maz Xz vz T2z Again, there are two optical axes in one of the coordinate

Obviously, such systems may be optically active and havelanes. The optical activity can be seen only if the axes are in

two optical axes. the yz plane. In this case the plane of polarization of two
In the special positions in which these pairs of tubes sharéght beams striking the tube along two optical axes will be

a horizontal axigassumed to be theaxis) and neither mir-  rotated through equal anglésroportional toa,,) but in the

ror nor glide planes, the composite tube has the symmetrgpposite directiongFig. 3(c), with a= — 8].

TD; when translational periods are commensurate and only To the second class of double-wall nanodevices belong

D, symmetry, otherwise. The tensor forms are tubes with an order 2 principal axis of the isogonal group.
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There are tubes having a screw aiZils(AA and ZZ pairs for 0 ay O
N=1, withnn’ odd), and tubes with no screw axis but with _
e ) A=|lay 0 0]. (19
a second-order principal axis: they may be commensurate
(like AA and ZZ pairs forN=2 andnn’/4 being evejor 0 0 0
not (like AZ pairs forN=2). Examples of such commensu-
rate metallic-semiconducting pairs are the ZZ p@0)—  The possible positions of the optical axes are discussed after

(17,0 and the CC pairn9,6—(15,10, while the AZ pair relation(16), but the activity is allowed only when the axes
(8,8—(22,0, the CC pair (12,6—(18,10, the CZ pair are in thexy direction: the polarization of the light incoming
(8,14—(28,0, and the AC pair6,6—(12,10 are examples along the axes is rotated through the same angles but in the
of the incommensurate devices of the same type. The ZZ paipposite sensgrig. 3(d), with a=—g].
(13,0—(21,0 and the CC pai(12,89—(18,129 are of com- The third class of double-wall tubes is those for which
mensurate semiconducting-metallic type, while incommeneitherQ or N is greater than 2. As for ZZ, AA, and ZA tubes,
surate examples are the ZA tufde,0—(14,14, the CC tube  this means thal>2 (also AA and ZZ withN=2 if nn'/4 is
(22,12—(28,10, the CZ tubeg(16,9—(30,0, and the ZC tube odd. Commensurate metallic-metallic nano-optical devices
(14,0—(16,10. In addition to the AA pairgalways metallic- of this class are the AA pair$5,5—(10,10 and (8,8)—
metallic and commensurate tube&,5—(9,9 and (7,7—- (12,12 and the ZZ pairs(9,0—-(18,0 and (12,0—(21,0,
(11,12, the semiconducting-semiconducting commensuratavhile the incommensurate ones are the AZ péit8)—(21,0
tubes ZZ(11,0—(19,0 and CC(6,4—(12,9 also belong to and (9,9—(24,0, the ZA pairs(12,0—(12,12 and (18,0—
this class of nano-optic devices. Incommensuratg15,19, the CC pain9,3)—(18,3), the CZ pair(12,9—-(27,0,
semiconducting-semiconducting devices are the CC paithe ZC pair(15,0—(18,9, and the CA pain24,6—(21,2]).
(10,9—(16,12, the CZ pair(10,2—(20,0 and the ZC pair The AZ pair(15,15—(35,0 and the pair ZC(24,0—(28,8
(26,0—(30,9, while the incommensurate metallic-metallic are  examples of the incommensurate metallic-
ones are the CC tub&2,49—(22,16, the CZ tube(8,2—  semiconducting double-wall optical devices, the ZA tubes
(18,0, and the AC tub&8,8—(16,10. (11,0—(11,1) and (13,0—(13,13, the CC tube(20,12—
Generally, the symmetry groups of the considered case$32,8, and the ZC tub&28,0—(32,8 are incommensurate
areT%Cl, TC,, andC,. The tensor of the permeability and Semiconducting-metallic optical devices, and the ZZ pair
the consequent geometry of the optical axes are giveniny  (10,0—(18,0 is a commensurate example of the same type.

Eq. (15). The optical activity tensor has the form Tube ZZ (14,0—(22,0 is an example of a commensurate
semiconducting-semiconducting system.

In general, for all systems the symmetry position belongs

ax ay O to one of the group?.TgCN , TCy, orCy . All these cases are
A=| ay, a, 0 |, (17) characterized by the diagonal tenserandA, given by Eq.
0 0 a (12). The only special position allowing optical activity is
77

when the horizontal axes coincide; concerning the optical
activity, this reduces to the previously considered single-wall
When the both optical axes lie in they plane the polariza- case[Eq. (11)].

tions of the beams parallel to them is rotated through differ- Note that among the ZA combinations, there are incom-
ent anglegFig. 3(c), with a# B]. Otherwise, thexy plane  mensurate tubes with symmetri€s and D,,, with a non-
bisects the axes and the optical activity will be exhibitedtrivial tensorA, which are still inactive since the only candi-
equally along the axgg$=ig. 3(c), with o= 8]. date for the optical axis is theaxis, whilea,,=0. The same

In the special positions of the coaxial single-wall compo-argument has been used in several previously discussed cases
nents, preserving the horizontdlaxis, the symmetry groups to eliminate some specific arrangements of the optical axes.
of the above enumerated double-wall tubes B§B;, TD, In recent effective-medium calculations of the optical
andD,, respectively. Tensat is given by Eq.(16), while properties of the aligned carbon nanotuBthe dielectric

constants of graphitee( ande, for the directions parallel
and perpendicular to the graphite sheets, respecjialy
a 0 0 transferred to cylindrical multishells, assuming that the nano-
A=| 0 a, 0|, (18)  tube is locally similar to graphite. That is, instead of Eq.
0 0 a (12), the most general form of the dielectric tensor is Eq.
2z (15), with &,,=&, ande,y, 4,, ande,, depending on both
graphite dielectric constants. This further specifies the geom-
Two optical axes are allowed, and both of them lie in one ofetry of the optical axes in the following low-symmetry cases
the coordinate planes, depending on the values, of &y, (otherwise, the restrictions imposed by the line-group sym-
ande,,. The polarization will be rotated through the samemetry of the nanotube are more seyerEhat is, the optical
angle and with the same sense along the both [@4gs. 3c) axes of tubes with symmetriek and C, will lie in the xy
and 3d) for a=g]. plane, or this plane will bisect theffrig. 3(d) or 3(c), re-

In the special position with a common vertical mirror or spectively, with independenrt and3]. Concerning the tubes
glide plane, the mentioned ZZ and AA tubes increase thevith symmetryTD; or D, if the optical axes are bisected by
symmetry toT3Cy,, TcC, or TC,,, and the ZA tubes to the yz plane, they lie in one of the other two coordinate
C,, . In these cases the permeability tensor is also given bplanes; thus only the two limiting cases of FighBarise:

Eq. (16), while the optical tensor has the form with the same angle and sense of rotation, the axes are either
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in thexy plane[Fig. 3(d)] or theyz plane[Fig. 3(c)]. Analo- Additional symmetries are manifested as relations be-
gously, for the tubes witdfC,, , T, or C;, symmetry, the tween the coefficientsy',\("(p) in Eq. (22). The invariance
axes lie either in thexy or yz plane, while theo, plane  under the horizontdl axis readsV(p,¢,2)=V(p,— ¢,—2),
bisects them; again one of the two limiting cases of Fi§) 3 giving al (p)=a_}(p); thus the most general potential of
is relevant: witha= — g, the axes’ plane is either the hori- the chiral single-wall nanotube is

zontal[Fig. 3(d)] or the vertical ondFig. 3(c)].

0

Finally, it should be noted that, although the line groups M 2

are related exclusively to infinite quasi-1D systems, the reV(r)= K;:O g (p)co ?Kz+nM<p

sults presented in this section correspond equally well to Mr = —K mod(g/n)

both infinite- and finite-length nanotubes, since the dielectric o 5

and optical tensors are determined by an isogonal group + M cos(—WKz—nM ) 24

only. On the other hand, the optical activity should continu- K%:o #ic(p) a e 4

ously diminish as the tube diameter increases, approaching Mr =K mod(@/n)

the inactive 2D graphene sheet. As for the zigzag and armchair tubes, potenti2®) is
invariant undefo, andU. For further purposes, is consid-

IV. POTENTIALS IN NANOTUBES ered at first; manifesting as the requiremevifp,¢,z)

: . =V(p,— ¢,2), this giveswy = w, " andel =€, ™, and the
Potentials produced by a single-wall nanotube must be (p,~¢.2) gIVES®ic = @k €K ™ €K

invariant under the transformations of its symmetry graup fhoée;tlﬁl,[%hfzrr:i?;t general one for the line gromb”C“" , of
This means that the potenti(r) is a spatial function obey- 9

ing o
. V= > > wl(p)cogMng)ek@maz
Vi =VIPID @0 < Mt

for each elementR|t) of L acting according to Eql). In
the forthcoming analysis this property is used to obtain quite + E
restrictive conditions on the form &f. Since the invariance K=
under the generators implies the invariance under the whole , . . :
group, Eq.(20) should be inspected only for the generatorslnC“Jdm_g theU axis as in Ec_].(24)., the general zigzag and
of L to find the independent conditions. The single-wall2'Mchair potentials are obtained:

L 2 e(p)cogMng)e ez (25)
even even

nanotubes will be treated explicitly, but hints for generaliza- %
tion to the multiwall il be given t y 2m
on to the multiwall ones will be given too. - V(= > oW¥(p)cog —Kz|cogMne)
The translational and rotational symmetries of the tube, 'V'"fjgl a
generated byl(a) andC,,, immediately enable one to ob- °
tain the Fourier expansion over the cylindrical coordinates ” " 2
andz + E ex (p)cog —Kz|cogMng). (26)
M;K=0 a
even
V(r)= E a|l\(/l(p)e|nM<pe|(27-r/a)Kz. 1) Note that due_to thga implicitly encquptereq invari'ance, all
K.M= —c the terms are invariant when thexis is reversed, in contrast

to the chiral case.
To incorporate the whole subgrou®), the screw axis gen-  The obtained potentials can be further specified. When a
erator (Cgl(n/g)a) should be employed. Relatiof20) be-  Taylor expansion o (p) is performed, the sum of terms
comesV(p,¢,z) =V[p,¢—(2m/q)r,z—(n/g)a]. When ap-  wijth the same order ip is an invariant polynomial of the
plied to Eq.(21), this helical group restricts the sum only to |ine group. Therefore, this is a polynomial over the integrity
the terms, withMr +K being multiple ofg/n: basis of the line group* with a very restricted form. As for
the translationally periodic multiwall tubes, the method de-
B M Mt (2mla)Kz scribed can be applied, with analogous results. A different
V(r)= K MZQW a(p)eve - (22 sjtuation occurs with nanotubes having incommensurate
Mr:’_K mo({g‘) components._They have 0r_1|y point-group symmetries, acting
n on the coordinates according to the homogeneous rules. In-

For the zigzag and armchair tubgs 2n andr =1, and the stead of the Fourier expansions ¢nandz, the total Taylor
restriction M = —K mod(2) reduces the sum to the terms expansion is considered, with terms being invariant polyno-

oo

with K andM of the same parity: mials in all the coordinates. So only the Molien functions
and the integrity bases for the point groups are to be &sed.

o These topics will be considered elsewhere in detail, while in

V(= > ol(p)eMieegkra)z the rest of this section some important implications of the

M,ﬁd—m presented results will be derived. For simplicity, zigzag and

armchair nanotubes will be considered.
~ " MoK (2m/a)z The separation of even and odd terms characterizes poten-
T KE:_OC e (p)eve : (23 tials (23), (25), and(26) related to the screw axiBs, of the
"even zigzag and armchair tubes. In addition to the terms indepen-
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dent ofz, in the even part there are terms with translational V. CONCLUDING REMARKS
periods that are fractions ad/2. The periods of the odd
harmonics are odd fractions of the original periaaf the
tube. All the terms with the periodicity of the tube, i.e., with

All the geometrical symmetries of the nanotubes are
found. In addition to the rotations, translations, and screw

K=1, have a nontrivial rotational periodicityz@Mn. Of  @xes observed previously, the single-wall tubes always pos-
course, this reveals the influence of the helical nature of th§€SS horizontal rotational axes; the zigzag and armchair tubes
tube on its physical properties. For example, the constarffave mirror and glide planes in addition. Thus the full sym-
electric field along the tube axis breaks theeversal sym- Metry group isT¢D,, for single-wall chiral tubes an@;Dy,
metries, |owering the symmetry group szlnCnV! and the for Zigzag and armchair ones. The parameqa:mdr of the
resulting current density is given by E@®5). Therefore, ei- helical group are found in a simple and closed form. Since
ther the local-density variations are due only to the harmon2/q is the angle of the minimal rotatiofcombined with
ics with the periods being even fractionsa®, or there are fractional translationperformed by the symmetry group, the
chiral current components; this can be experimentally testedirder of the principal axis of the isogonal groupgisand is
In fact, all the terms witiM,K#0 also give this interesting always even. Moreover,Ris the number of the carbon at-
possibility. oms in the elementary translational cell of the tube. Let us
Finally, possible relative positions of a double-wall tube mention here that the different tubes cannot have the same
consisting of zigzag or armchair components will be dis-symmetry parameters, r, n, anda. This profound property
cussed. Their mutual interaction can be considered as th@eans that the line group is sufficient to reconstruct the tube
sum of the potentials that the atoms of the second tUbE‘as demonstrated b)], i.e., that the symmetry completely
[(n",0) or (n’,n")] experience in field26) produced by the  determines the geometry and all consequent characteristics
first tube (,0) or (n,n). The potential of the whole second of the nanotube. The symmetries of the multiwall tubes are
nanotube becomeE;”:_WEQ;OEﬁZOV(rISU). This sum de- quite diverse: depending on the type of the single-wall com-
pends on the relative positions of the single-wall compo-onents and their arrangements, all the line and axial point
nents, which are parametrized by the angjeand the height groups emerge: armchair and zigzag tubes can be combined
z, between theit) axes. With the help of Eq$6) and(7) the  to make a prototype for any line or axial symmetry group.
potentialvﬂ/ over a single atom can be calculated. For 7 This immediately shows t_hat the properties of_ the nanotubes
and AZ tubes, the obtained potential is constant, i.e., indeMay vary greatly, depending not only on the single-wall con-
pendent of the relative position of the single-wall compo-St'tuems’ but also on the]r mutual positions.
nents. This is a natural consequence of the incommensura- There are many phy_s[callpropertles based on symmelry,
bility of the zigzag and armchair tubes. That is, two coaxialand, the presented cIaSS|f|pat|0n of th_e nanotubes acco@_ng to
incommensurate helices pass through all the possible mutuHj€ir Symmetry can be widely exploited. The most familiar
positions, independently of their initial pointthe tube is CconSequence of symmetry, the special forms of the tensors
considered to be long enoughand none of their relative related to the characteristics of the system, depends on the

spatial positions is singled out. Thus no energy is require&sogonal group. The tensors of the dielectric permeablity

for relative coaxial translations and rotations of the compo-2d Optical activityA are studied. It is demonstrated that

nents, and this is manifested as the obtained constant potefloSt Of the nanotubes are optically active. More important

tial. In the cases of ZZ and AA tubes one firjtlse constants SEeems to. be the fact that thgre are many spec@al confc.)rlma-
ol and e} are the values of the coefficients in the radius:'nonr?ifmc t3|trilgrl1e—w]:alltlhand trirslli{[Itl\;vaItl) turtr)lei'tiwr;th dqr?ltre _Spﬁc'f'cn g
p=D’/2 of the second tube ard=G(n,n")] anifestations of the activity to be mentioned here: one a

two optical axes in various positions with respect to the tube,
w0 , , the activity not accompanied by the optical isomers; the co-
VA SN cos(z—Ter )cos(ﬂMcp )sinz mhn operative activity of the inactive single-wall tubes; and the
nCwkt K a © N 0 N2 inactive tubes with vanishing and nonvanishing optic ten-
odd sors. Thus the results may be used to propose how to con-
* o nn’ struct a large class of possibly interesting optic devices by
+ 2 e“K" cos(—Kzo)cos<—Mcpo>. (270 fine nanotube synthesis only. Also, they can be valuable in
M.K=1 a N the experimental identification of nanotutfés.
The same study revealed a subtle interrelationship of the
Note that the odd terms appear only in the “odd” caseproperties of graphite layers and nanotubes. Due to the iso-
(Table ), with the symmetry grouff3Cy, in a general posi- gonal groupDg, of the honeycomb lattice, the symmetry
tion. The minima of this potential single out the preferredarguments alone suffice to prevent the optical activity of
relative positions of the tubes. The importance of such amraphite. Although only a few of these symmetries remain in
analysis stems from the expected dependence of the propeghe nanotube’s line group, its isogonal point group is larger,
ties of the tube on the relative positions of the componentshecause some of the honeycomb translations contribute to it.
as illustrated in the discussion on the optical activity. ForNevertheless, except in the special cases of zigzag and arm-
further considerations, some assumption on the realistichair tubes, the activity is allowed, but the general form of
forces between the components is needed. Here we note ortlye dielectric tensoe is more restrictive than in graphite.
that an absolute extremal point of the potentialgig= z, Further, the symmetry can be used to find good quantum
=0, i.e., the position of the coincidelt axis of the compo- numbers. To begin with single-wall nanotubes, the transla-
nents. Thus maximal symmetry positions are preferred if theional periodicity is reflected in the conserved quasimomen-
forces are attractive. tum k, taking the values from the 1D Brillouine zone

even
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(—r,m], or its irreducible domaif? [0,7]. Alsqg, the zcom-  formation on selection rules, comprising the conservation of
ponent of the quasiangular momentumis the quantum duantum numbers, for processes in the nanotubes has be-
number caused by the symmetry of the principal rotationaf2Mme availab after the full line(or poiny group symmetry
axis; it takes on the integer values from the intervalVas esta}bllshe_d. : . .

(—n/2,n/2], and characterizes the nanotube quantum statea.eThe dimension of an irreducible representation equals the

. . s generacy of the corresponding energy level. For periodic
The parlty with respect to r'eve'rsal of theaxis, induced by tubes, the degeneracy of the energy bands is at most four-
the horizontal rotational axig, is the last quantum number

Il the sinal Il tub £ d odd fold; nevertheless, if the time-reversal symmetry of ¢@n-
common to all the single-wall tubes. Even and odd stateg,;enendent Hamiltonian is encountered, the maximal de-

with respect to this parity are conventionally denotedby generacy is eightfol@® Further, the possible degeneracies
and —. For the zigzag and armchair tubes there is, in addizre only twofold, fourfold, and eightfold. As for multiwall
tion, vertical mirror plane parity, introducing the quantum pnanotubes with incommensurate components, the dimensions
numbersA and B, to distinguish between the even and oddof the irreducible representations of the axial point groups
states(the parity with respect to the horizontal mirror plane are one, two, andf the time-reversal symmetry is included
is dependent on the above discuskeando, parities= and  four, showing the possible degeneracies of the energy levels.
A/B). Concerning the multiwall tubes) is again a quantum Note that the maximal of the enumerated degeneracies
number. Again,z-reversal and vertical mirror parities may (eightfold and fourfold is not possible for tubes containing
appear, depending on the concrete symmetry of the nan@t least one chiral single-wall component. Moreover, the de-
tube. Nevertheless, tubes with incommensurate componenggneracy of the multiwall tube in the general position of its
are not periodic, and in such cases the quasimomektisn component is at most twofold, which is caused by the time-
not an appropriate quantum number; it may be an interestingeversal symmetry exclusively.
experimental question whether the approach of modulated Also, the lattice dynamics can be studied. As mentioned
systems can be applied to restore this quantity. The simplabove, the entire single-wall tube can be obtained from its
criterion of commensurability of the single-wall tubes is de-arbitrary atom by the action of the elements of its symmetry
rived: they have the sanmR, and \qq'/nn’ is an integer. group [Eq. (8)]; in group-theoretical language, this means
The involved symmetry parametegsandn are discrete, al- that the whole nanotube is a single orbit of this gréumd
lowing an exact experimental check of commensurability. the orbit isa, for the chiral tubep, for the zigzag tube, and
The enumerated quantum numbers may be used to discuds for the armchair tubé® Thus the normal modgghonons
and predict many characteristics of the nanotubes, but thare already classifiedf. The dynamical representation of the
most sophisticated approach to classification and propertieshiral tube is decomposed into the following irreducible
of different quantum states is based on the irreducible represomponents[the summation oveik is over the interval
sentations of the corresponding [fA€® and point groups. (0,7); in the primed summ takes integer values from
Let us point out that these representations are labeled by thH®,n/2), otherwise from n/2,n/2]; the components with
derived quantum numbers. The most exhaustive possible imn=n/2 appear only fon even:

D= 3(0Aa +0Ag A5+ 2Ag + ANzt oAzt Art A2 +6 2" (Bt oBm) +6 2 (En.

It can be seen that all of thenvibrational bands are doubly degenerate, as anticipated. As for the zigzag and armchair tubes
the corresponding decompositions ésemmation inmis over integers from (@), and in the primed sums frofi©,(n/2)])

Dgivggaf 2(Ag + oAy + Al oA, + ,Eg) +oBg + 0By + 0By + 0B, +4,Ea
+3% (OE,;+OE;n)+22k [kEBO+kEBn+2(kEAO+kEAn)]+6§m‘,' WGm+6;n Gm+3E + Enn),
D mchai= 2(0Ag +0Bg T oAn +oBr ) +0Ag +oBg oA, + By +3(,Eat -Ep)

armchair—

+6;n ka+3; (kEAO+kEBO+kEAn+kEBn)+% (40E;+2C,Er;)+6§' Gt 3(Er ot Enp).

Analogous data can be directly found for each nanotubelahn-Teller theorem is proved both for point and line
This classification can be used to simplify calculation of thegroups®

vibrational bands? the obtained bands are automatically la-  The results of Sec. IV enable us to generalize the Bloch
beled by the symmetry-based quantum numbers, meanirtheorem to the line-group symmetries of the single-wall
that Raman and incommensurate spectra can be directly eranotube$:multiplying these invariant functions by the ma-
tracted by the selection rules. Note, in this context, that therix elements of the corresponding irreducible representation,
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all the quantum states and covariant functions can be olplications to nanotubes, as well as the proposed possibility of
tained. On the other hand, many of the nanotube propertiethe chiral currents. The fields produced by such currents
can be understood on the basis of these potentials. The maould also be used for tube identification.

tual independence of the incommensurate ideal infinite co-
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