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Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes

M. Damnjanović,* I. Milošević, T. Vuković and R. Sredanovic´
Faculty of Physics, University of Beograd, POB 368, Beograd 11001, Yugoslavia

~Received 8 January 1999!

The full symmetry groups for all single-wall and multiwall carbon nanotubes are found. As for the single-
wall tubes, the symmetries form non-Abelian nonsymorphic line groups, enlarging the groups reported in the
literature. In the multiwall case, any type of line and axial point groups can be obtained, depending on
single-wall constituents and their relative position. The isogonal symmetry is related to the macroscopic tensor
properties of the nanotubes. The optical activity is studied within this framework, and a detailed classification
of the possible nanotube-based optical devices is given. At the microscopic level, full symmetry is used to find
general forms of the characteristic functions of the nanotubes. In particular, the stability of the double-wall
configurations and the possibility of chiral currents are discussed. Several other consequences are discussed:
quantum numbers and related selection rules, phonon spectra, etc. In particular, the bands of the zigzag and the
armchair tubes are generally expected to be fourfold degenerate.@S0163-1829~99!06427-9#
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I. INTRODUCTION

Single-wall carbon nanotubes are quasi-one-dimensio
~1D! cylindrical structures,1–3 which can be imagined a
rolled up cylinders of the 2D honeycomb lattice of the sing
atomic layer of crystalline graphite. Frequently, seve
single-wall tubes are coaxially arranged, forming a multiw
nanotube. Since their diameters are small~down to 0.7 nm!
in comparison to their lengths~up to tens ofmm), the theo-
retical model of the extended~i.e., infinite, and hence with
out caps at the ends! nanotube is well justified.

The symmetry of the nanotubes is relevant both for d
insight into the physical properties~quantum numbers, selec
tion rules, optical activity, conducting properties, etc.! and to
simplify calculations. As for single-wall tubes, symmet
studies started with the classification of the graphene tu
according to fivefold, threefold, or twofold axes of the r
lated C60 molecule,4 and gave just a part of their point-grou
symmetry. The translational periodicity was discussed in
context of the nanotube metallic properties.5 Finally, the he-
lical and rotational symmetries were found6,7: the screw axis
was characterized in terms of tube parameters, as well a
order of the principal rotational axis.7 The first goal of this
paper is to complete this task, giving the full geometric sy
metry of the extended single-wall nanotubes. Due to their
translational periodicity, the resulting groups are the l
groups;8,9 it appears that only two line-group families a
relevant: the fifth for the chiral, and the 13th for the armch
and zigzag nanotubes.

The symmetry of the double-wall and multiwall tubes h
never been seriously studied, despite their importance
applications in nanodevices. Here we present an exhau
list of symmetries of such tubes. Depending on the sing
wall constituents, and their relative arrangement, the res
ing nanotube symmetry may be either a line group or
axial point group.

In Sec. II, at first the necessary notions on the line gro
are briefly summarized, and the relevant notation is int
duced. Then, in Sec. II A, the line groups of all the nanotu
are derived: the familiar symmetries of the original graphe
PRB 600163-1829/99/60~4!/2728~12!/$15.00
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lattice are transferred into the tubular geometry, and th
which remain symmetries of the rolled up lattice form t
corresponding line group. In addition to the rotational, tra
lational, and helical symmetries, the horizontal axes and~for
zigzag and armchair tubes! mirror and glide planes are als
present. The symmetry groups of multiwall nanotubes
studied in Sec. II B. Note that among these there are a
tubes that are not translationally periodic.

Many of the physical properties of the nanotubes are
termined by their symmetry. First, for the properties char
terized by the second-rank tensors~the general form of these
tensors has been already found10!, a detailed analysis is en
abled. The study of the optical activity, presented in Sec.
yields an exhaustive list of the different types of optical a
tivities of the nanotubes, with the optical axes and cor
sponding examples. These results might be a hint of the
perimental setups in the context of the optical nanodevic
Further, the potentials for various physical problems may
modeled with the use of symmetry. The general forms
such potentials are derived in Sec. IV; these are applied
discussion of the relative positions of the components in
multiwall tubes and the structure of the local current dens
Some other related results are discussed in Sec. V.

II. SYMMETRY OF NANOTUBES

The line groups8,11 contain all symmetries of the system
periodical in one direction, and usually are used in the c
text of stereoregular polymers and quasi-1D subsystem
3D crystals. It immediately follows that, being period
along its axis, any extended single-wall nanotube has
symmetry described by one of the line groups.

All the line-group transformations leave the tube axisz
axis, by convention! invariant. Consequently, such a tran
formation (Put) ~Koster-Seitz symbol! is some point-group
operationP preserving thez axis, followed by the translation
for t along thez axis. Action on the pointr5(x,y,z) gives
(Put)r5(x8,y8,z8), with

x85Pxxx1Pxyy, y85Pyxx1Pyyy, z85Pzzz1t. ~1!
2728 ©1999 The American Physical Society
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FIG. 1. Symmetries of the honeycomb lattice. For the chiral~8,6!, zigzag~6,0!, and armchair~6,6! tubes the chiral vectorscW are depicted
by the arrows. TheU andU8 axes pass through the circles~perpendicular to the honeycomb!. In the zigzag and armchair cases, the bold lin

sv andsv8 represent the vertical mirror and glide planes of the lattice, being orthogonal tocW ; the planes parallel tocW are denoted assh and
sh8 ; U is the intersection of the mirror planes, andU8 that of the glide planes.
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Here,Pi j are elements of the 333 matrix ofP in the Carte-
sian coordinates; those couplingz to the other axes vanish
Such point operations are called axial, and they form se
types of the axial point groups:12 Cn , S2n , Cnh , Cnv , Dn ,
Dnd , andDnh , wheren51,2, . . . is theorder of the principal
rotational axis.

There are infinitely many line groups, since there is
crystallographic restriction on the order of the principal ax
and they are classified within 13 families. Each line group
a productL5ZP of one axial point groupP and one infinite
cyclic group Z of generalized translations„screw axisTq

r ,
pure translationsT5T1

0 , or glide planeTc , generated by the
transformations „Cq

r u(n/q)a…, (I ua), and (svua/2),
respectively,13

…. Thus, to determine the full symmetry of
nanotube, both of these factors~having only the identical
transformation in common! should be found. The point fac
tor P should be distinguished from the isogonal point gro
PI of the line group:11 only for the symorphic groups whe
Z5T, these groups are equal; otherwisePI is not a subgroup
of L . Due to the convention,13 2p/q is the minimal angle of
rotation performed by the elements of the line group~if the
screw axis is nontrivial it is followed by some fraction
translation!, as well as by its isogonal point group.

The easiest way to determine the line groupL of a system
is first to find the subgroupL (1), containing all the transla
tions and the rotations around the principal axis~including
the ones followed by fractional translations!. Having the
same screw axis (T is a special case! as L , and the same
ordern of the principal axis, this subgroupL (1)5Tq

r Cn is the
maximal subgroup from the first line-group family. Then t
symmetries complementingL (1) to L should be looked for.
To completeZ, it should be checked if there is a vertic
glide plane. Also,Cn is to be complemented toP by eventual
additional point-group generators; at most two of them are
be chosen among the mirror planes, horizontal rotatio
axes of order 2 or rotoreflection axis~refining pure rotations
that are already encountered inCn).

A. Single-wall nanotubes

Elementary cell of the hexagonal honeycomb lattice~Fig.
1! is formed by vectorsaW 1 and aW 2 of the length a0

52.461 Å ; within its areaSg5A3/2a0
2 there are two carbon

atoms at positions (aW 11aW 2)/3 and 2(aW 11aW 2)/3. The single-
wall nanotube (n1 ,n2) is formed when the honeycomb la
n

o
,
s

o
al

tice is rolled up in such a way that the chiral vectorcW

5n1aW 11n2aW 2 becomes the circumference of the tube~its
end and origin match!. The tubes (n1,0) and (n1 ,n1) are
called zigzag and armchair tubes, respectively, while the o
ers are known as chiral tubes. The chiral angleu of the
nanotube is the angle between the chiral vectorcW and the
zigzag directionaW 1. When 0<u,p/3, all the tubes are en
countered; in fact, for the zigzag and armchair nanotubeu
equals 0 andp/6, respectively, and between these chiralit
lay chiral vectors of all the chiral nanotubes withn1.n2
.0 @the tubes (n2 ,n1), with p/6,u,p/3, are their optical
isomers, as will be discussed later#.

There aren5G(n1 ,n2) ~G is the greatest common divi
sor! honeycomb lattice points laying on the chiral vecto
The translations forscW /n in the chiral direction on the tube
appear as the rotations for 2sp/n (s50,1, . . . ) around the
tube axis. Thus the principal axis of ordern is a subgroup of
the full symmetry of the tube (n1 ,n2):

Cn , n5G~n1 ,n2!. ~2!

Obviously, n5n1 for the zigzag (n1,0) and armchair
(n1 ,n1) nanotubes.

To the primitive translation of the tube corresponds t
vector aW 5a1aW 11a2aW 2 in the honeycomb lattice, being th
minimal one among the lattice vectors orthogonal ontocW .
Therefore,a1 anda2 are coprimes, yielding

aW 52
2n21n1

nR aW 11
2n11n2

nR aW 2 ,

a5uaW u5
A3~n1

21n2
21n1n2!

nR a0 , ~3!

with R53 if (n12n2)/3n is integer andR51 otherwise.
For the zigzag and armchair tubesa5A3a0 and a5a0, re-
spectively. The elementary cell of the tube is the cylinder
the heighta and areaSt5aucW u; it contains St /Sg52@(n1

2

1n2
21n1n2 /nR# elementary graphene cells.7 So, the trans-

lational groupT of the nanotube is composed of the eleme
(I uta), t50,61, . . . .

The encountered symmetriesT andCn originate from the
honeycomb lattice translations: on the folded lattice
translations along the chiral vector become pure rotatio
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while those alongaW remain pure translations. These eleme
generate the whole nanotube from the sector of angle 2p/n
of the elementary cell, with 2@(n1

21n2
21n1n2)/n2R# el-

ementary graphene cells. This number is always greater
1, pointing out that not all of the honeycomb lattice trans
tions are taken into account. The missing translations
neither parallel with nor orthogonal ontocW ; on the rolled up
sheet they are manifested as rotations~for fraction of 2p/n)
combined with translations~for fractions ofa), yielding the
screw axis of the nanotube. Its generator@Cq

r u(n/q)a# corre-

sponds to the vectorzW5r (cW /q)1n(aW /q) of the honeycomb
lattice, which, together with the encountered translatio
generates the whole honeycomb lattice. ThuszW can be cho-
sen to form the elementary honeycomb cell together with
minimal lattice vectorcW /n along the chiral direction. The
honeycomb cell areaSg must be the product ofucW u/n and the
lengthna/q of the projection ofzW onto aW : aucW u/q5A3a0

2/2.
This gives the orderq of the screw axis. Finally,r is found14

from the condition that projections ofzW on theaW 1 andaW 2 are
coprimes. This completely determines the screw a
(Fr@x#5x2@x# is the fractional part of the rational numbe
x, and w(m) is the Euler function, giving the number o
coprimes less thanm):

Z5Tq
r , q52

n1
21n1n21n2

2

nR ,

r 5
q

n
FrF n

qR S 322
n12n2

n1
D1

n

n1
S n12n2

n D w(n1 /n)21G .
~4!

For both the zigzag (n,0) and armchair (n,n) tubes,q52n
andr 51, i.e.,Z5T2n

1 . Note thatq is an even multiple ofn.
It is equal to the number of the graphene cells in the elem
tary cell of the tubeSt /Sg . Therefore,q/n is the number of
the graphene cells in the sector, and is therefore alw
greater than 1; this means that all the single-wall tubes h
nonsymorphic symmetry groups.

To resume, the translational symmetry of the honeyco
lattice appears as the groupL (1)5Tq

r Cn of symmetries of the
nanotube, withq and r given by Eqs.~4!. Its elements
(Cq

rtCn
sutn/qa) (t50,61, . . . , s50, . . . ,n21) generate the

whole nanotube from any adjacent pair of the nanotube
oms. The groupL (1) contains all the symmetries previous
considered in the literature.4,6,7,3 Note that the screw axis
used here is somewhat different to the previously repo
ones, due to the convention.13 With this convention 2p/q is
the minimal rotation~followed by some fractional transla
tion! in the group,14 providing that q is the order of the
principal axis of the isogonal point group. This explains w
q is equal to the number of graphene cells contained in
elementary cell of the tube. Note that the translational per
a and the diameterD of the tube are determined by the sym
metry parametersq andn:

a5A 3q

2Rn
a0 , D5

1

p
ARnq

2
a0 . ~5!
s
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-
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e
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Besides the translations, there are other symmetries o
honeycomb lattice:~a! perpendicular rotational axes throug
the centers of the hexagons~of order 6!, through the carbon
atoms~of order 3! and through the centers of the edges of t
hexagons~of order 2!; ~b! six vertical mirror planes through
the centers of the hexagons formed by the atoms~or through
the atoms!; and ~c! two types of vertical glide planes—
connecting the midpoints of the adjacent edges, and the m
points of the next to nearest-neighboring edges of the he
gons.

Among the rotations, only those forp, leaving invariant
the axis ofaW , i.e., thez axis of the tube, remain the symmetr
of the rolled up lattice. Thus two types of horizontal secon
order axes emerge as symmetries of any nanotube~Fig. 1!:
U, passing through the center of the deformed nanot
hexagons; andU8, passing through the midpoints of the a
jacent atoms. Moreover, the first of these transformation
obtained when the second one is followed by the screw a
generator:U5„Cq

r u(n/q)a…U8. Thus, any of them, sayU,
complements the principal tube axisCn to the dihedral point
groupDn . This shows that at least the line groupTq

r Dn ~from
the fifth family! is the symmetry group of any nanotub
Note thatU8 just permutes the two carbon atoms in the
ementary honeycomb cell, meaning that all the honeyco
atoms are obtained from an arbitrary one by the translati
and the rotationU8. Analogously, the elements of the grou
Tq

r Dn generate the whole nanotube from any of its atom
Action ~1! of the group elements on the pointr000
5(r0 ,f0 ,z0) ~cylindrical coordinates! gives the points

r tsu5S Cq
rtCn

sUuUt n

q
aD r000

5Fr0 ,~21!uw012pS t

q
1

s

nD ,~21!uz01t
n

q
aG , ~6!

(u50,1; s50, . . . ,n21; t50,61, . . . ); hereafter thex axis
is assumed to coincide with theU axis. Using Eq.~5!, it can
be shown that the coordinates of the first atom~positioned at
1
3 (aW 11aW 2) on the honeycomb! are

r000
C 5S D

2
,2p

n11n2

nqR ,
n12n2

A6nqRa0D . ~7!

Substituting these values into Eq.~6!, the coordinates of all
other atoms are obtained.

Rolling up deforms any plane perpendicular onto t
graphene sheet, unless it is either parallel withcW ~then it
becomes a horizontal plane! or orthogonal tocW ~giving a
vertical plane!. Thus only tubes with chiral vectors paralle
or orthogonal to the enumerated mirror and glide planes
tain additional symmetries of these types. The zigzag
armchair tubes are immediately singled out by simple
spection. Only in these cases is the chiral vector in a perp
dicular mirror plane; when the sheet is rolled up, this pla
becomes the horizontal mirror planesh of the corresponding
nanotubes. Enlarging the previously found point symme
group Dn by sh , the point groupDnh of the zigzag and
armchair tubes is obtained. Finally, taking into account
generalized translations~4!, the full symmetry groups of the
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FIG. 2. Symmetries of the single-wall nanotubes:~8,6!, ~6,0!, and~6,6!. The horizontal rotational axesU andU8 are symmetries of all
the tubes, while the mirror planes (sv and sh), the glide planesv8 , and the rotoreflectional planesh8 are symmetries of the zigzag an
armchair tubes only. The line groups areT148

21 D2 for ~8,6!, andT12
1 D6h for the other two tubes.
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single-wall nanotubes are~besides the factorized notation
the international symbol is also given!:

L chiral5Tq
r Dn5Lqp22,

p5qFrF nR
q

S 2n21n1

nR D w(2n11n2/nR)21

q2n2

2n11n2

G , ~8a!

Larmchair5L zigzag5T2n
1 Dnh5L2nn /mcm. ~8b!

Their isogonal point groups11 areDq andD2nh .
The line groupT2n

1 Dnh ~13th family! contains various new
symmetries~Fig. 2!, all combinations of the ones mentione
above. In fact, whensh has been added to the groupT2n

1 Dn ,
the other mirror and glide planes parallel to and orthogo
ontocW are automatically included in the symmetry groups
the zigzag and armchair nanotubes. These transforma
can be seen assh followed by some of the elements from
T2n

1 Dn . At first, there aren vertical mirror planes~one of
them issv5shU, and the others are obtained by pure ro
tions; by the previous convention, thesh plane is the
xy-coordinate plane!. Bisecting the mirror planes, there a

glide planes@e.g., the product (sv8u
1
2 )5(C2nu 1

2 a)sv#, and the
vertical rotoreflection axis of order 2n ~generated bysvU8
5C2nsh8 , the reflection in thesh8 plane, followed by the
rotation forp/n).

The vectors obtained fromcW by the rotations from the
point symmetry groupC6v of the honeycomb lattice, produc
the nanotubes which are essentially the same one,
looked at from the rotated coordinate systems. Neverthe
the vertical mirror plane image ofcW ~e.g., in the vertical
plane bisecting the angle ofaW 1 and aW 2) produces the tube
which can be considered as the same one only in the c
dinate system with the opposite sign~the coordinate transfor
mation involves the spatial inversion!. Thus tubes (n1 ,n2)
and (n2 ,n1) are optical isomers. Only the mirror image
the zigzag and armchair tubes is equivalent to the origi
and these tubes have no optical isomers. This is manife
in the optical activity, as will be discussed in sec. III. Co
cerning the symmetry groups, ifTq

r Cn corresponds to the
tube (n1 ,n2), then the group of the tube (n2 ,n1) is
l
f
ns

-

ly
s,

r-

l,
ed

Tq
(q/n)2rCn ~although isomorphic, these groups are eq

only when q52n and r 51, i.e., only for the zigzag and
armchair tubes!.

B. Double-wall and multiwall nanotubes

The symmetry of a multiwall nanotube now can be fou
as intersection of the symmetry groups of its single-wall co
stituents. This task will be considered for double-wall tub
at first, and then the results are straightforwardly generali
to the multiwall ones. The intersection of the line groupsL
5ZP andL 85Z8P8 has the formL25Z2(PùP8). Thus the
intersection of the point groups is looked for independen
of the generalized translations.

As derived in Eq.~2!, the tubes (n1 ,n2) and (n18 ,n28) are
invariant under the rotations around their axes for the m
tiples of the angles 2p/n and 2p/n8 @n5G(n1 ,n2) andn8
5G(n18 ,n28)], respectively. The tube composed of these c
axially arranged components is invariant under the rotat
for 2p/N, the minimal common rotation of the componen
and its multiples. Thus the principal axis subgroup of t
double-wall nanotube is CN , with N5G(n,n8)
5G(n1 ,n2 ,n18 ,n28). The horizontal second-order rotation
axis U ~and U8) is also symmetry of all single-wall nano
tubes. Nevertheless, such an axis remains the symmetr
the composite tube only if it is common to all of the comp
nents, and then the point symmetry isDN . Obviously, if a
nanotube contains at least one chiral component, thenDN is
its maximal point symmetry. Only tubes composed exc
sively of zigzag and armchair single-wall components m
have additional mirror and glide planes, as well as a roto
flectional axis. Analogously to the horizontal axis, these
symmetries of the whole tube only if they are common for
of the components~the rotoreflectional axis appear only
the horizontal planessh8 coincides!.

After the point symmetries are thereby completely det
mined, the more difficult study of the generalized trans
tional factorZ2 remains. Note that, at first, it may be com
pletely absent. Suppose that double-wall tube has
translational periodA. If the translational periods of its con
stituents area anda8, thenA is obviously the minimal dis-
tance being multiple both ofa and of a8: A5aa5a8a8,
wherea anda8 are positive coprimes~to assure minimality!.
Thus the double-wall tube is translationally periodic if a
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TABLE I. Symmetry of the multiwall zigzag and armchair tubes. For the periodic tubes, the line gr
~and families! and the isogonal groups are in the ‘‘odd’’ columns if all the ratiosn/N, n8/N, . . . are odd, and
in the ‘‘even’’ columns otherwise. The point groups of the tubes with both zigzag and armchair compo
are in the last column. In the first column the relative positions of the component tubes are character
the coinciding symmetry elements~beside the common principal axis in the general position!. Here (U,U8)
denotes the horizontal axis, which is theU axis in some of the constituents, and theU8 axis in the remaining
ones~to exclude the additional mirror or glide planes!. Also, (sh ,sh8) is the plane, which issh in some of
the constituents~with evenn, necessarily! andsh8 in the remaining tubes; in the incommensurate case,
same groups are obtained whensh8 planes are in common.

Relative Line group Isogonal group Point
position ‘‘Odd’’ ‘‘Even’’ ‘‘Odd’’ ‘‘Even’’ group

General T2N
1 CN ~1! TCN ~1! C2N CN CN

sh T2N
1 CNh ~4! TCNh ~3! C2Nh CNh CNh

sv T2N
1 CNv ~8! TCNv ~6! C2Nv CNv CNv

sv8 T2N
1 CNv ~8! TcCNv ~7! C2Nv CNv CN

(U,U8) T2N
1 DN ~5! TDN ~5! D2N DN DN

sh ,sv T2N
1 DNh ~13! TDNh ~11! D2Nh DNh DNh

sh ,sv8 T2N
1 DNh ~13! TcCNh ~12! D2Nh DNh CNh

(sh ,sh8) T2N
1 CNh ~4! TS2N ~2! C2Nh S2N S2N

(sh ,sh8), sv T2N
1 DNh ~13! TDNd ~9! D2Nh DNd DNd

(sh ,sh8), sv8 T2N
1 DNh ~13! TcS2N ~10! D2Nh DNd S2N
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only if the translational periods of its constituents are co
mensurate, i.e., only whena8/a is rational. Conversely, if
a8/a is an irrational number, the composed tube is not tra
lationally periodic, andZ2 is trivial ~identical transformation
only!; the total symmetry reduces to the already found po
group.

In the commensurate case it remains to examine if
translational group can be refined by a screw axis, comm
to all of the single-wall components. The task is to determ
the screw axis generator (CQ

RuF) with maximalQ, appearing

in the both groupsL5Tq
r Cn andL 85Tq8

r 8Cn8 . Thus we look
for the values ofQ, R and F ~in accordance with Ref. 13!,
such that there exist integerst, s, t8, ands8 ~enumerating the
elements ofL andL 8) satisfying

~CQ
RuF !5~Cq

rtCn
sut f !5~Cq8

r 8t8Cn8
s8 ut8 f 8!

with F5
N

Q
A, f 5

n

q
a, f 85

n8

q8
a8. ~9!

Obviously, the fractional translationF is multipleF5tF* of
the minimal common fractional translationF* , implying A
5(Q/N)tF* . Analogously toA, the translationF* is found
as the minimal distance being multiple both off and f 8; thus
it is given by the unique solution in the coprimesf andf8
of the equationF* 5f f 5f8 f 8. Since the translational peri
ods of the single-wall components are multiples of their fr
tional translations,A is multiple of F* , i.e., A5FF* . With
the help of number theory, it can be shown14 that only the
tubes with the sameR may be commensurate; thena5f8
5Aq8/n8G(q/n,q8/n8), a85F5Aq/n/G(q/n,q8/n8) and
F5Aqq8/nn8. ThusQ5FN/t, and the minimalt is looked
for to provide the finest screw axis. The translational par
Eq. ~9! immediately shows thatt5ta8 and t85ta. With
this value substituted, the rotational part of Eq.~9! gives the
equations
-

s-

t

e
n

e

-

f

CQ
R5Cq

ra8tCn
s5Cq8

r 8atCn8
s8 . ~10!

The minimalt for which the last equation is solvable ins
and s8 is t5F/G(ran8/N2r 8a8n/N,F). Finally, Q
5NG(ran8/N2r 8a8n/N,Aqq8/nn8), andR is easily found
from Eq. ~10!.

All these results are immediately generalized to the m
tiwall tubes. Note that the generalized translations and
principal rotational axis of the multiwall nanotube depe
only on the types of their single-wall components. Co
versely, the appearance of the mirror and glide planes
the horizontal axes in the common symmetry group is ad
tionally determined by the relative positions of these com
nents.

It remains to give the summary of the symmetry groups
the multiwall tubes. If at least one of the single-wall constit
ents is chiral, then in the commensurate case there are
possibilities:TQ

RCN , corresponding to the general mutual p
sition; andTQ

RDN in the special mutual positions with com
mon U axis. Analogously, the tube built of incommensura
components has a symmetry described by the point gro
CN or DN . If the nanotube is built of zigzag and armcha
single-wall tubes (n,0) @or (n,n), (n8,0) or (n8,n8)#, . . . , the
order of the principal rotational axis isN5G(n,n8, . . . ). If
the tube contains at least one single-wall tube of both typ
no translational periodicity appears and its symmetry is
scribed by a point group~Table I!. On the other hand, for a
tube composed of components of the same type~either zig-
zag or armchair!, the translational period is equal to that
the components. Two different situations may occur: if
the integersn/N, n8/N . . . are odd~‘‘odd’’ case!, the trans-
lations are refined by the screw axisT2N

1 ; otherwise, if at
least one of these integers is even~‘‘even’’ case!, no screw
axis emerges. The analysis of the special arrangement
constituents with common horizontal axes, mirror or gli
planes, increasing the symmetry of the total system is s
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FIG. 3. Optical activity of carbon nanotubes. The optical axes~with the direction of the beams! are indicated by the arrows. For th
double-axis devices, the axes’ plane is shown; initially, field vectors~arrows orthogonal to the axes! are polarized in this plane. The
out-of-plane arrows indicate the rotated~for the anglesa and b) field vectors of the outgoing beams. The positions of the axes and
relative values ofa andb in ~a!–~d! depend on the symmetry group of the tube, and they are specified in the text.
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marized in Table I. Note that according to the various
rangements of the components, any of the line and a
point groups may be the resulting symmetry for the comm
surate and incommensurate components, respectively. S
examples are given in Sec. III.

III. OPTICAL ACTIVITY

As the symmetry classification of the single-wall and m
tiwall carbon nanotubes has been completed, the genera
trix forms of the symmetrical polar and axial second-ra
tensors for systems having line-group symmetry10 can be
used to predict many of the physical properties. Here
optical activity of the isolated carbon nanotubes will be a
lyzed in order to select the nanotubes relevant for furt
experiments on optical activity and propose the character
experimental setups. To avoid the influence of the other
fects, birefringence and anisotropy of absorption, only
activity along the optical axes is discussed~the birefringence
in thin films of aligned carbon nanotubes has been alre
reported15!. Different types of activity are illustrated b
double-wall tubes with a realistic interlayer distance1,16 of
approximately 3.4 Å , giving examples of potentially inter
esting nano-optical devices; their metallic or semiconduc
properties17 and commensurability are emphasized. Since
optical activity decreases for nanotubes with larg
diameter,19 tubes with diameters up to 3 nm are consider

In the optically active medium, the polarization plane o
linearly polarized light beam incoming along the optical a
with the ort k5(kx ,ky ,kz), is rotated through an angl
( i , j kikjai j per unit length;ai j are elements of the optica
activity tensorA, an axially symmetric second-rank tenso
Thus, from the general axial tensors of the line groups,10 the
symmetric part is to be taken to obtain the form ofA. The
general form of the dielectric tensor«, a polar symmetric
second-rank tensor, is used to predict the shape of the op
indicatrice and thereby the spatial orientation of the opti
axes of a particular nanotube.18 When two eigenvalues of«
coincide, the indicatrice is rotational ellipsoid and the tu
axis is the only optical axis. On the other hand, when all
eigenvalues of« are different, two optical axes emerge; a
though their exact spatial directions may be found only a
the values of the permeability tensor elements are kno
pure symmetry arguments leave only two or three possib
-
al
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ties, and each of them will be discussed. It should be stres
that the most general symmetry-constrained tensor forms
used, but due to some other physical reasons, the ten
may have an even more specific form. For example, the p
sible assumption that the tensor« is determined by the di-
electric permeability of the graphite results in the disappe
ance of additional tensor components. Discussion of
question is postponed to the end of the section, in orde
present the most general results, independent of this assu
tion ~thus the derived forms refer generally to the symme
cal second-rank tensors!.

A. Single-wall tubes

The general form of the tensors of dielectric permeabi
and optical activity for the symmetry groupsTq

r Dn of the
chiral tubes have the same diagonal form~for q.2, which
refers to the all realistic tubes!:

«5S «xx 0 0

0 «xx 0

0 0 «zz

D , A5S axx 0 0

0 axx 0

0 0 azz

D . ~11!

SinceA does not vanish, the chiral tubes are expected to
optically active. Two equal diagonal elements in« single out
the tube axis as the optical axis. The polarization plane
rotated@Fig. 3~a!# through an anglea proportional toazz;
~the highly oscillatory dependence ofazz on the frequency of
the external field19 may be of additional experimental inte
est!. As already mentioned in Sec. II A, the tubes (n1 ,n2)
and (n2 ,n1) are the optical isomers~having screw axes o
opposite sign! and thus rotate the polarization of incomin
field through equal angles but in opposite directions. On
other hand, single-wall zigzag and armchair nanotubes
optically inactive, since their axial tensors vanish.

B. Double-wall tubes

Only a part of multiwall nanotubes has symmetries~de-
rived in Sec. II A! compatible with the optical activity; thes
cases will be analyzed and illustrated here. In general p
tions, the symmetry group of a double-wall tube belon
either to the first line-group family~when the translationa
periods of the constituents are commensurate! or to the rota-



u-
by
tr

on
th
po

ve

ve
e
m
n
at
re
l
ra

a-
ra

s;

n

iv
ir

ic
n
p

pe

ra

av

a

et
n

pos-

is

-

a

u-
orm
ne

the

-
op-
can
ng
se,
he

er-

ate
e in
o

be

ong
p.

2734 PRB 60M. DAMNJANOVIĆ et al.
tional group familyCN ~when the periods are incommens
rate!. In both cases the optical activity is not forbidden
symmetry. Still, it can be prevented by increased symme
in the special spatial arrangements of the single-wall c
stituents. The additional horizontal axes cannot cause
effect and therefore, tubes with at least one chiral com
nent, i.e., chiral-chiral~CC!, chiral-armchair ~CA!, and
chiral-zigzag~CZ! components are always active and ha
optical isomers. Only the zigzag-zigzag~ZZ!, armchair-
armchair~AA !, and armchair-zigzag~AZ! components lose
activity when their single-wall constituents are in relati
positions with coinciding mirror or glide planes. Otherwis
these tubes may be active, despite the inactivity of their co
ponents and the absence of the optical isomers. In additio
this general result, a more subtle discussion on the sp
position of the optical axes is performed. To this end, th
classes of nanotubes~differing by the order of the rotationa
and screw axis! are considered separately, at first in a gene
position and then in different special positions.

Let us first consider optically active tubes without rot
tional symmetry; this includes the tubes having in gene
position either the pure translational symmetryT ~commen-
surate constituents; e.g., ZZ and AA, withnn8 even andN
51), or the trivial groupC1 ~incommensurate component
e.g., AZ withN51). Realistic metallic-metallic pairs are AA
~6,6!–~11,11!, ~7,7!–~12,12!, CA ~11,2!–~12,12!, and CC
~22,4!–~26,11! ~commensurate! and ZA ~9,0!–~10,10!,
~15,0!–~14,14!, CZ ~11,2!–~21,0!, CA ~13,4!–~14,14!, and
CC ~10,4!–~19,4! ~incommensurate!. The commensurate
semiconducting-semiconducting nano-optic devices belo
ing to this class are the ZZ pairs~10,0!–~19,0! and ~11,0!–
~20,0! and the CC pair~7,3!–~14,6!, while the incommensu-
rate ones are the CC pair~6,4!–~17,1!, the CZ pair~9,2!–
~19,0!, and the ZC pair~10,0!–~17,3!. Examples of the
incommensurate metallic-semiconducting optically act
double-wall tubes, belonging to this class, are the AZ pa
~5,5!–~17,0!, ~6,6!–~19,0!, and ~8,8!–~23,0!, the CC pair
~24,9!–~35,6!, the CZ pair~25,7!–~38,0!, the ZC pair~27,0!–
~31,8!, and the AC pair~17,17!–~30,13!, while the CC pair
~21,9!–~28,12! is an example of the commensurate metall
semiconducting optically active tube. Finally, the incomme
surate semiconducting-metallic devices are the ZA-ty
pairs: ~10,0!–~11,11!, ~14,0!–~13,13!, ~17,0!–~15,15!, the
CC pair ~6,4!–~13,7!, the CZ pair~8,6!–~21,0!, the ZC pair
~10,0!–~15,6!, and the CA pair~16,2!–~15,15!, while the
commensurate one is the double-wall tube of CC ty
~14,6!–~21,9!.

To the T and C1 groups correspond the most gene
forms of the tensors« andA:

«5S «xx «xy «xz

«xy «yy «yz

«xz «yz «zz

D , A5S axx axy axz

axy ayy ayz

axz ayz azz

D . ~12!

Obviously, such systems may be optically active and h
two optical axes.

In the special positions in which these pairs of tubes sh
a horizontal axis~assumed to be thex axis! and neither mir-
ror nor glide planes, the composite tube has the symm
TD1 when translational periods are commensurate and o
D1 symmetry, otherwise. The tensor forms are
y
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«5S «xx 0 0

0 «yy «yz

0 «yz «zz

D , A5S axx 0 0

0 ayy ayz

0 ayz azz

D . ~13!

The system has two optical axes and two situations are
sible: either the axes are bisected by theyz plane@Fig. 3~b!
for a5b# when the polarization of beams along them
rotated through the same angles~and in the same directions!,
or the axes are in theyz plane when the rotations are ex
pected, in general, to be different@Fig. 3~c! for independent
a andb#.

If the considered tubes are in a special position with

preserved vertical mirrorsv or glide plane (sv8u
1
2 ) ~this ex-

cludes the tubes with chiral components! the corresponding
symmetry groups areTC1v ~containing a mirror plane! or
TcC1 ~containing a glide plane! in the translationally peri-
odic case, andC1v when the components are incommens
rate. In all these cases the relevant tensors are of the f
~where thexz plane has been taken as the symmetry pla!

«5S «xx 0 «xz

0 «yy 0

«xz 0 «zz

D , A5S 0 axy 0

axy 0 ayz

0 ayz 0
D . ~14!

Analogously, when the horizontal mirror planes coincide,
same pairs have eitherTC1h ~if commensurate! or C1h ~if
incommensurate! symmetry. The general tensor forms are

«5S «xx «xy 0

«xy «yy 0

0 0 «zz

D , A5S 0 0 axz

0 0 ayz

axz ayz 0
D . ~15!

The form of the« in Eqs. ~14! and ~15! allows two possi-
bilities for the positions of the optical axes~this depends on
the concrete values« i j ): either both of them are in the sym
metry plane, or this plane bisects the angle between the
tical axes. It is easy to see that only in the second case
the tubes be optically active: if, for the beam incoming alo
one of the axes, the rotation of the polarization is clockwi
it will be counterclockwise through an equal angle for t
beam incoming along the other axis@see Fig. 3~b! for a tube
with sv symmetry, and Fig. 3~c! for a tube withsh symme-
try, both withb52a#.

Finally, when the pairs preserve both horizontal and v
tical mirror or glide planes, their symmetry group isTD1h or
TcC1h for ZZ and AA pairs, andD1h for ZA pairs. All of
them have tensors of the following forms:

«5S «xx 0 0

0 «yy 0

0 0 «zz

D , A5S 0 0 0

0 0 ayz

0 ayz 0
D . ~16!

Again, there are two optical axes in one of the coordin
planes. The optical activity can be seen only if the axes ar
the yz plane. In this case the plane of polarization of tw
light beams striking the tube along two optical axes will
rotated through equal angles~proportional toayz) but in the
opposite directions@Fig. 3~c!, with a52b#.

To the second class of double-wall nanodevices bel
tubes with an order 2 principal axis of the isogonal grou
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There are tubes having a screw axisT2
1 ~AA and ZZ pairs for

N51, with nn8 odd!, and tubes with no screw axis but wit
a second-order principal axis: they may be commensu
~like AA and ZZ pairs forN52 andnn8/4 being even! or
not ~like AZ pairs for N52). Examples of such commensu
rate metallic-semiconducting pairs are the ZZ pair~9,0!–
~17,0! and the CC pair~9,6!–~15,10!, while the AZ pair
~8,8!–~22,0!, the CC pair ~12,6!–~18,10!, the CZ pair
~8,14!–~28,0!, and the AC pair~6,6!–~12,10! are examples
of the incommensurate devices of the same type. The ZZ
~13,0!–~21,0! and the CC pair~12,8!–~18,12! are of com-
mensurate semiconducting-metallic type, while incomm
surate examples are the ZA tube~16,0!–~14,14!, the CC tube
~22,12!–~28,16!, the CZ tube~16,8!–~30,0!, and the ZC tube
~14,0!–~16,10!. In addition to the AA pairs~always metallic-
metallic and commensurate tubes! ~5,5!–~9,9! and ~7,7!–
~11,11!, the semiconducting-semiconducting commensur
tubes ZZ~11,0!–~19,0! and CC~6,4!–~12,8! also belong to
this class of nano-optic devices. Incommensur
semiconducting-semiconducting devices are the CC
~10,8!–~16,12!, the CZ pair~10,2!–~20,0! and the ZC pair
~26,0!–~30,8!, while the incommensurate metallic-metall
ones are the CC tube~22,4!–~22,16!, the CZ tube~8,2!–
~18,0!, and the AC tube~8,8!–~16,10!.

Generally, the symmetry groups of the considered ca
areT2

1C1 , TC2, andC2. The tensor of the permeability an
the consequent geometry of the optical axes are given by« in
Eq. ~15!. The optical activity tensor has the form

A5S axx axy 0

axy ayy 0

0 0 azz

D . ~17!

When the both optical axes lie in thexy plane the polariza-
tions of the beams parallel to them is rotated through diff
ent angles@Fig. 3~c!, with aÞb#. Otherwise, thexy plane
bisects the axes and the optical activity will be exhibit
equally along the axes@Fig. 3~c!, with a5b#.

In the special positions of the coaxial single-wall comp
nents, preserving the horizontalU axis, the symmetry group
of the above enumerated double-wall tubes areT2

1D1 , TD2

andD2, respectively. Tensor« is given by Eq.~16!, while

A5S axx 0 0

0 ayy 0

0 0 azz

D . ~18!

Two optical axes are allowed, and both of them lie in one
the coordinate planes, depending on the values of«xx , «yy ,
and «zz. The polarization will be rotated through the sam
angle and with the same sense along the both axes@Figs. 3~c!
and 3~d! for a5b#.

In the special position with a common vertical mirror
glide plane, the mentioned ZZ and AA tubes increase
symmetry toT2

1C1v , TcC2 or TC2v , and the ZA tubes to
C2v . In these cases the permeability tensor is also given
Eq. ~16!, while the optical tensor has the form
te
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A5S 0 axy 0

axy 0 0

0 0 0
D . ~19!

The possible positions of the optical axes are discussed
relation ~16!, but the activity is allowed only when the axe
are in thexy direction: the polarization of the light incomin
along the axes is rotated through the same angles but in
opposite sense@Fig. 3~d!, with a52b#.

The third class of double-wall tubes is those for whi
eitherQ or N is greater than 2. As for ZZ, AA, and ZA tubes
this means thatN.2 ~also AA and ZZ withN52 if nn8/4 is
odd!. Commensurate metallic-metallic nano-optical devic
of this class are the AA pairs~5,5!–~10,10! and ~8,8!–
~12,12! and the ZZ pairs~9,0!–~18,0! and ~12,0!–~21,0!,
while the incommensurate ones are the AZ pairs~7,7!–~21,0!
and ~9,9!–~24,0!, the ZA pairs~12,0!–~12,12! and ~18,0!–
~15,15!, the CC pair~9,3!–~18,3!, the CZ pair~12,9!–~27,0!,
the ZC pair~15,0!–~18,9!, and the CA pair~24,6!–~21,21!.
The AZ pair ~15,15!–~35,0! and the pair ZC~24,0!–~28,8!
are examples of the incommensurate metal
semiconducting double-wall optical devices, the ZA tub
~11,0!–~11,11! and ~13,0!–~13,13!, the CC tube~20,12!–
~32,8!, and the ZC tube~28,0!–~32,8! are incommensurate
semiconducting-metallic optical devices, and the ZZ p
~10,0!–~18,0! is a commensurate example of the same ty
Tube ZZ ~14,0!–~22,0! is an example of a commensura
semiconducting-semiconducting system.

In general, for all systems the symmetry position belon
to one of the groupsTQ

RCN , TCN , or CN . All these cases are
characterized by the diagonal tensors« andA, given by Eq.
~11!. The only special position allowing optical activity i
when the horizontal axes coincide; concerning the opt
activity, this reduces to the previously considered single-w
case@Eq. ~11!#.

Note that among the ZA combinations, there are inco
mensurate tubes with symmetriesS4 and D2n , with a non-
trivial tensorA, which are still inactive since the only cand
date for the optical axis is thez axis, whileazz50. The same
argument has been used in several previously discussed
to eliminate some specific arrangements of the optical ax

In recent effective-medium calculations of the optic
properties of the aligned carbon nanotubes,20 the dielectric
constants of graphite (« i and «' for the directions parallel
and perpendicular to the graphite sheets, respectively! are
transferred to cylindrical multishells, assuming that the na
tube is locally similar to graphite. That is, instead of E
~12!, the most general form of the dielectric tensor is E
~15!, with «zz5«' and«xx , «xy , and«yy depending on both
graphite dielectric constants. This further specifies the ge
etry of the optical axes in the following low-symmetry cas
~otherwise, the restrictions imposed by the line-group sy
metry of the nanotube are more severe!. That is, the optical
axes of tubes with symmetriesT and C1 will lie in the xy
plane, or this plane will bisect them@Fig. 3~d! or 3~c!, re-
spectively, with independenta andb#. Concerning the tubes
with symmetryTD1 or D1, if the optical axes are bisected b
the yz plane, they lie in one of the other two coordina
planes; thus only the two limiting cases of Fig. 3~b! arise:
with the same angle and sense of rotation, the axes are e
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in thexy plane@Fig. 3~d!# or theyz plane@Fig. 3~c!#. Analo-
gously, for the tubes withTC1v , Tc , or C1v symmetry, the
axes lie either in thexy or yz plane, while thesv plane
bisects them; again one of the two limiting cases of Fig. 3~b!
is relevant: witha52b, the axes’ plane is either the hor
zontal @Fig. 3~d!# or the vertical one@Fig. 3~c!#.

Finally, it should be noted that, although the line grou
are related exclusively to infinite quasi-1D systems, the
sults presented in this section correspond equally wel
both infinite- and finite-length nanotubes, since the dielec
and optical tensors are determined by an isogonal gr
only. On the other hand, the optical activity should contin
ously diminish as the tube diameter increases, approac
the inactive 2D graphene sheet.

IV. POTENTIALS IN NANOTUBES

Potentials produced by a single-wall nanotube must
invariant under the transformations of its symmetry groupL .
This means that the potentialV(r ) is a spatial function obey
ing

V~r !5V@~Put !21r # ~20!

for each element (Put) of L acting according to Eq.~1!. In
the forthcoming analysis this property is used to obtain qu
restrictive conditions on the form ofV. Since the invariance
under the generators implies the invariance under the w
group, Eq.~20! should be inspected only for the generato
of L to find the independent conditions. The single-w
nanotubes will be treated explicitly, but hints for generaliz
tion to the multiwall ones will be given too.

The translational and rotational symmetries of the tu
generated by (I ua) and Cn , immediately enable one to ob
tain the Fourier expansion over the cylindrical coordinatew
andz:

V~r !5 (
K,M52`

`

aK
M~r!eınMweı(2p/a)Kz. ~21!

To incorporate the whole subgroupL (1), the screw axis gen
erator „Cq

r u(n/q)a… should be employed. Relation~20! be-
comesV(r,w,z)5V@r,w2(2p/q)r ,z2(n/q)a#. When ap-
plied to Eq.~21!, this helical group restricts the sum only
the terms, withMr 1K being multiple ofq/n:

V~r !5 (
K,M52`

Mr 52K modS q
nD

`

aK
M~r!eınMweı(2p/a)Kz. ~22!

For the zigzag and armchair tubesq52n and r 51, and the
restriction M52K mod(2) reduces the sum to the term
with K andM of the same parity:

V~r !5 (
M ,K52`

odd

`

vK
M~r!eıMnweıK(2p/a)z

1 (
M ,K52`

even

`

eK
M~r!eıMnweıK(2p/a)z. ~23!
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Additional symmetries are manifested as relations
tween the coefficientsaK

M(r) in Eq. ~22!. The invariance
under the horizontalU axis readsV(r,w,z)5V(r,2w,2z),
giving aK

M(r)5a2K
2M(r); thus the most general potential o

the chiral single-wall nanotube is

V~r !5 (
K,M50

Mr 52K mod(q/n)

`

pK
M~r!cosS 2p

a
Kz1nMw D

1 (
K,M50

Mr 5K mod(q/n)

`

mK
M~r!cosS 2p

a
Kz2nMw D . ~24!

As for the zigzag and armchair tubes, potential~23! is
invariant undersv andU. For further purposessv is consid-
ered at first; manifesting as the requirementV(r,w,z)
5V(r,2w,z), this givesvK

M5vK
2M andeK

M5eK
2M , and the

potential~the most general one for the line groupT2n
1 Cnv , of

the eighth family!

V~r !5 (
K52`

odd

`

(
M51
odd

`

vK
M~r!cos~Mnw!eıK(2p/a)z

1 (
K52`

even

`

(
M50
even

`

eK
M~r!cos~Mnw!eıK(2p/a)z. ~25!

Including theU axis as in Eq.~24!, the general zigzag and
armchair potentials are obtained:

V~r !5 (
M ,K51

odd

`

vK
M~r!cosS 2p

a
KzD cos~Mnw!

1 (
M ,K50

even

`

eK
M~r!cosS 2p

a
KzD cos~Mnw!. ~26!

Note that due to the implicitly encounteredsh invariance, all
the terms are invariant when thezaxis is reversed, in contras
to the chiral case.

The obtained potentials can be further specified. Whe
Taylor expansion ofaK

M(r) is performed, the sum of term
with the same order inr is an invariant polynomial of the
line group. Therefore, this is a polynomial over the integr
basis of the line group,21 with a very restricted form. As for
the translationally periodic multiwall tubes, the method d
scribed can be applied, with analogous results. A differ
situation occurs with nanotubes having incommensur
components. They have only point-group symmetries, ac
on the coordinates according to the homogeneous rules
stead of the Fourier expansions inw andz, the total Taylor
expansion is considered, with terms being invariant poly
mials in all the coordinates. So only the Molien functio
and the integrity bases for the point groups are to be use22

These topics will be considered elsewhere in detail, while
the rest of this section some important implications of t
presented results will be derived. For simplicity, zigzag a
armchair nanotubes will be considered.

The separation of even and odd terms characterizes po
tials ~23!, ~25!, and~26! related to the screw axisT2n

1 of the
zigzag and armchair tubes. In addition to the terms indep
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dent ofz, in the even part there are terms with translatio
periods that are fractions ofa/2. The periods of the odd
harmonics are odd fractions of the original perioda of the
tube. All the terms with the periodicity of the tube, i.e., wi
K51, have a nontrivial rotational periodicity 2p/Mn. Of
course, this reveals the influence of the helical nature of
tube on its physical properties. For example, the cons
electric field along the tube axis breaks thez-reversal sym-
metries, lowering the symmetry group toT2n

1 Cnv , and the
resulting current density is given by Eq.~25!. Therefore, ei-
ther the local-density variations are due only to the harm
ics with the periods being even fractions ofa/2, or there are
chiral current components; this can be experimentally tes
In fact, all the terms withM ,KÞ0 also give this interesting
possibility.

Finally, possible relative positions of a double-wall tu
consisting of zigzag or armchair components will be d
cussed. Their mutual interaction can be considered as
sum of the potentials that the atoms of the second t
@(n8,0) or (n8,n8)] experience in field~26! produced by the
first tube (n,0) or (n,n). The potential of the whole secon

nanotube becomes( t52`
` (s50

n8 (u50
1 V(r tsu). This sum de-

pends on the relative positions of the single-wall comp
nents, which are parametrized by the anglew0 and the height
z0 between theirU axes. With the help of Eqs.~6! and~7! the

potentialVn
n8 over a single atom can be calculated. For Z

and AZ tubes, the obtained potential is constant, i.e., in
pendent of the relative position of the single-wall comp
nents. This is a natural consequence of the incommens
bility of the zigzag and armchair tubes. That is, two coax
incommensurate helices pass through all the possible mu
positions, independently of their initial points~the tube is
considered to be long enough!, and none of their relative
spatial positions is singled out. Thus no energy is requi
for relative coaxial translations and rotations of the com
nents, and this is manifested as the obtained constant po
tial. In the cases of ZZ and AA tubes one finds@the constants
vK

M and eK
M are the values of the coefficients in the radi

r5D8/2 of the second tube andN5G(n,n8)#

Vn
n85 (

M ,K51
odd

`

vK
M cosS 2p

a
Kz0D cosS nn8

N
Mw0D sin2S pnn8

2N2 D
1 (

M ,K51
even

`

eK
M cosS 2p

a
Kz0D cosS nn8

N
Mw0D . ~27!

Note that the odd terms appear only in the ‘‘odd’’ ca
~Table I!, with the symmetry groupT2

1CN in a general posi-
tion. The minima of this potential single out the preferr
relative positions of the tubes. The importance of such
analysis stems from the expected dependence of the pro
ties of the tube on the relative positions of the compone
as illustrated in the discussion on the optical activity. F
further considerations, some assumption on the real
forces between the components is needed. Here we note
that an absolute extremal point of the potential isw05z0
50, i.e., the position of the coincidentU axis of the compo-
nents. Thus maximal symmetry positions are preferred if
forces are attractive.
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V. CONCLUDING REMARKS

All the geometrical symmetries of the nanotubes a
found. In addition to the rotations, translations, and scr
axes observed previously, the single-wall tubes always p
sess horizontal rotational axes; the zigzag and armchair tu
have mirror and glide planes in addition. Thus the full sy
metry group isTq

r Dn for single-wall chiral tubes andT2
1Dnh

for zigzag and armchair ones. The parametersq andr of the
helical group are found in a simple and closed form. Sin
2p/q is the angle of the minimal rotation~combined with
fractional translation! performed by the symmetry group, th
order of the principal axis of the isogonal group isq and is
always even. Moreover, 2q is the number of the carbon a
oms in the elementary translational cell of the tube. Let
mention here that the different tubes cannot have the s
symmetry parametersq, r, n, anda. This profound property
means that the line group is sufficient to reconstruct the t
@as demonstrated by~6!#, i.e., that the symmetry completel
determines the geometry and all consequent characteri
of the nanotube. The symmetries of the multiwall tubes
quite diverse: depending on the type of the single-wall co
ponents and their arrangements, all the line and axial p
groups emerge: armchair and zigzag tubes can be comb
to make a prototype for any line or axial symmetry grou
This immediately shows that the properties of the nanotu
may vary greatly, depending not only on the single-wall co
stituents, but also on their mutual positions.

There are many physical properties based on symme
and the presented classification of the nanotubes accordin
their symmetry can be widely exploited. The most famili
consequence of symmetry, the special forms of the ten
related to the characteristics of the system, depends on
isogonal group. The tensors of the dielectric permeability«
and optical activityA are studied. It is demonstrated th
most of the nanotubes are optically active. More import
seems to be the fact that there are many special confor
tions of single-wall and multiwall tubes, with quite specifi
manifestations of the activity to be mentioned here: one
two optical axes in various positions with respect to the tu
the activity not accompanied by the optical isomers; the
operative activity of the inactive single-wall tubes; and t
inactive tubes with vanishing and nonvanishing optic te
sors. Thus the results may be used to propose how to
struct a large class of possibly interesting optic devices
fine nanotube synthesis only. Also, they can be valuable
the experimental identification of nanotubes.23

The same study revealed a subtle interrelationship of
properties of graphite layers and nanotubes. Due to the
gonal groupD6h of the honeycomb lattice, the symmetr
arguments alone suffice to prevent the optical activity
graphite. Although only a few of these symmetries remain
the nanotube’s line group, its isogonal point group is larg
because some of the honeycomb translations contribute
Nevertheless, except in the special cases of zigzag and
chair tubes, the activity is allowed, but the general form
the dielectric tensor« is more restrictive than in graphite.

Further, the symmetry can be used to find good quan
numbers. To begin with single-wall nanotubes, the trans
tional periodicity is reflected in the conserved quasimom
tum k, taking the values from the 1D Brillouine zone
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(2p,p], or its irreducible domain24 @0,p#. Also, the zcom-
ponent of the quasiangular momentumm is the quantum
number caused by the symmetry of the principal rotatio
axis; it takes on the integer values from the interv
(2n/2,n/2#, and characterizes the nanotube quantum sta
The parity with respect to reversal of thez axis, induced by
the horizontal rotational axisU, is the last quantum numbe
common to all the single-wall tubes. Even and odd sta
with respect to this parity are conventionally denoted by1
and2. For the zigzag and armchair tubes there is, in ad
tion, vertical mirror plane parity, introducing the quantu
numbersA and B, to distinguish between the even and o
states~the parity with respect to the horizontal mirror plan
is dependent on the above discussedU andsv parities6 and
A/B). Concerning the multiwall tubes,m is again a quantum
number. Again,z-reversal and vertical mirror parities ma
appear, depending on the concrete symmetry of the na
tube. Nevertheless, tubes with incommensurate compon
are not periodic, and in such cases the quasimomentumk is
not an appropriate quantum number; it may be an interes
experimental question whether the approach of modula
systems can be applied to restore this quantity. The sim
criterion of commensurability of the single-wall tubes is d
rived: they have the sameR, andAqq8/nn8 is an integer.
The involved symmetry parametersq andn are discrete, al-
lowing an exact experimental check of commensurability

The enumerated quantum numbers may be used to dis
and predict many characteristics of the nanotubes, but
most sophisticated approach to classification and prope
of different quantum states is based on the irreducible re
sentations of the corresponding line25,26 and point groups.
Let us point out that these representations are labeled by
derived quantum numbers. The most exhaustive possible
b
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formation on selection rules, comprising the conservation
quantum numbers, for processes in the nanotubes has
came available27 after the full line~or point! group symmetry
was established.

The dimension of an irreducible representation equals
degeneracy of the corresponding energy level. For perio
tubes, the degeneracy of the energy bands is at most f
fold; nevertheless, if the time-reversal symmetry of the~spin-
independent! Hamiltonian is encountered, the maximal d
generacy is eightfold.28 Further, the possible degeneraci
are only twofold, fourfold, and eightfold. As for multiwal
nanotubes with incommensurate components, the dimens
of the irreducible representations of the axial point grou
are one, two, and~if the time-reversal symmetry is included!
four, showing the possible degeneracies of the energy lev
Note that the maximal of the enumerated degenera
~eightfold and fourfold! is not possible for tubes containin
at least one chiral single-wall component. Moreover, the
generacy of the multiwall tube in the general position of
component is at most twofold, which is caused by the tim
reversal symmetry exclusively.

Also, the lattice dynamics can be studied. As mention
above, the entire single-wall tube can be obtained from
arbitrary atom by the action of the elements of its symme
group @Eq. ~8!#; in group-theoretical language, this mea
that the whole nanotube is a single orbit of this group,8 and
the orbit isa1 for the chiral tube,b1 for the zigzag tube, and
d1 for the armchair tube.29 Thus the normal modes~phonons!
are already classified.26 The dynamical representation of th
chiral tube is decomposed into the following irreducib
components@the summation overk is over the interval
(0,p); in the primed summ takes integer values from
(0,n/2), otherwise from (2n/2,n/2#; the components with
m5n/2 appear only forn even#:
ir tubes
Dchiral
dyn 53~oAo

11oAo
21pAo

11pAo
21oAn/2

1 1oAn/2
2 1pAn/2

1 1pAn/2
2 !16( 8

m
~pEm1oEm!16(

k,m
kEm .

It can be seen that all of the 6n vibrational bands are doubly degenerate, as anticipated. As for the zigzag and armcha
the corresponding decompositions are„summation inm is over integers from (0,n), and in the primed sums from@0,(n/2)#…

Dzigzag
dyn 52~oAo

11oAo
21oAn

11oAn
21pEB!1oBo

11oBo
21oBn

11oBn
214pEA

13(
m

~oEm
11oEm

2!12(
k

@kEBo
1kEBn

12~kEAo
1kEAn

!#16( 8
m

pGm16(
k,m

kGm13~pEn/2
1 1pEn/2

2 !,

Darmchair
dyn 52~oAo

11oBo
11oAn

11oBn
1!1oAo

21oBo
21oAn

21oBn
213~pEA1pEB!

16(
k,m

kGm13(
k

~kEAo
1kEBo

1kEAn
1kEBn

!1(
m

~4oEm
112oEm

2!16( 8
m

pGm13~pEn/2
1 1pEn/2

2 !.
ne

ch
all
-

ion,
Analogous data can be directly found for each nanotu
This classification can be used to simplify calculation of t
vibrational bands;30 the obtained bands are automatically
beled by the symmetry-based quantum numbers, mea
that Raman and incommensurate spectra can be directly
tracted by the selection rules. Note, in this context, that
e.

ng
x-
e

Jahn-Teller theorem is proved both for point and li
groups.26

The results of Sec. IV enable us to generalize the Blo
theorem to the line-group symmetries of the single-w
nanotubes:6 multiplying these invariant functions by the ma
trix elements of the corresponding irreducible representat
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all the quantum states and covariant functions can be
tained. On the other hand, many of the nanotube prope
can be understood on the basis of these potentials. The
tual independence of the incommensurate ideal infinite
axial tubes is an interesting result, that should be unders
due to their weak coupling in realistic cases. The relat
arrangement of two coaxial single-wall tubes is sharply
flected by the tensor properties of the tubes, as illustrate
Sec. III. In this context, the discussion on the preferred
sitions, being briefly described, should be important for
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10I. Milošević, Phys. Lett. A204, 63 ~1995!.
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