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Nanotubes have become attractive subjects in solid-state physics owing to their

potential applications in nanotechnology. Their symmetry is one of the

important tools in theoretical investigations. Here a review is presented of the

symmetry groups of the single-wall nano- and microtubes considered in

literature: BN, GaN, MS2, C, BC3, BC2N.

1. Introduction

During the last decade, nanotubes have been among the most

frequently studied physical systems. This interest stems from

their amazing properties promising high applicability in future

technology, e.g. variations in chirality and/or diameter of

carbon nanotubes result in change, sometimes tremendous, of

conductivity or optical properties, which enables ®ne tuning of

the desired characteristics. From Iijima's ®rst synthesis (Iijima,

1991) of carbon nanotubes, several other types of nanotube

and microtube have been found: here different types of

BxCyNz, WS2 and MoS2 tubes are mentioned only.

A common characteristic of these compounds is their high

symmetry, which has been revealed and applied in various

calculations from the very beginning of research on carbon

nanotubes. Their ®rst classi®cation was according to the

principal axis of the parent C60 molecule (Dresselhaus et al.,

1992), which involved only part of the point-group symmetry;

analyses of translational (Hamada et al., 1992) and helical and

rotational symmetries (White et al., 1993; Jishi et al., 1995;

Saito et al., 1998) in the context of electronic properties have

been completed recently (DamnjanovicÂ et al., 1999a,b) by

inclusion of parities in the full symmetry group. On the

contrary, the other tubes are less studied and almost no

attempt in this direction has been made.

The aim of this paper is to determine the full symmetry

groups of the known single-wall nanotubes. All of them are (as

are the carbon ones) quasi-1D cylindrical structures, periodic

along their axis and long enough for application of crystal

physics techniques. Besides this translational symmetry, they

possess a nontrivial rotational axis of high order. The origin of

these symmetries becomes transparent if the nanotube is

imagined as a layer rolled up into a cylinder. Then, the layer

lattice translations become the rototranslations. When this 2D

lattice is invariant under a nontrivial point group, some of

these operations may remain the symmetries of the obtained

tube and must also be included in the resulting line group.

The quasi-1D crystalline structure implies that the

symmetry group of the nanotube is one of the line groups,

which are de®ned as subgroups of the 3D Euclidean group

assembling all the symmetries of monoperiodic systems.

Therefore, the task is to recognise the line group corre-

sponding to a given tube, and a brief reminder on the line

groups necessary to accomplish it is given in x2. The problem is

solved by analysis of diperiodic layer symmetries compatible

with the folding procedure, as sketched in x3. After these

general considerations, the actual tubes are discussed in the

rest of the paper. Finally, the main manifestations of the

revealed symmetries in the nanotube physics are commented

on.

Note that these compounds, obtained from a single layer,

are single-wall nanotubes. Their coaxial arrangements are

called multiwall tubes and are beyond the scope of this article.

2. Line groups

Line (monoperiodic, rod) groups describe the spatial

symmetries of the system periodic (with period a) along one,

conveniently taken as the z axis, direction (MilosÆevicÂ &

DamnjanovicÂ, 1993; MilosÆevicÂ et al., 1996, 1997). Typical

examples are stereoregular polymers, quasi-1D subsystems of

crystals and the nanotubes.

A line group L contains elements �Pjt� (Koster±Seitz

symbol) leaving the z axis invariant, thus restricting the

point translational factor P and t respectively to axial

point-group operations (Janssen, 1973) and translations

along the z axis. In cylindrical coordinates, its action is

�Pjt� : ��; �; z�7!��; �0; z� t�. Such a structure of elements

implies that each line group is a (weak direct) product L � ZP

of one axial point group P and one in®nite cyclic group Z. The

groups within each of the seven families Cn, S2n, Cnh, Cnv, Dn,

Dnd, Dnh of axial point groups differ in order n � 1; 2; . . . of

the principal rotational axis. On the other hand, two types of

generalized translation group Z, screw-axis Tr
q [including the

special case of pure translations T�a� � T0
1�a�] and glide plane

Tc, are generated by the transformations zrq � �Cr
qj nq a� (z0 for

pure translations) and zv � ��vj a2�, respectively. Absence of

the crystallographic restrictions on the order of the principal

axis results in an in®nite number of line groups, and they are
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classi®ed within 13 families, characterized by a compatible

choice of the generalized translations group type and the axial

point-group family (Table 1).

To determine the full symmetry of a nanotube, both the

factors Z and P are to be found. Since Cn is a subgroup of

index 2 or 4 in any axial point group, each line group has the

subgroup L�1� � Tr
q�a�Cn [especially L�1� � T�a�Cn whenever

Z � Tc] of the same index, being the maximal ®rst family

subgroup in L. When this group is determined, it remains to

check for possible glide planes and parities (horizontal U axes,

and vertical and horizontal mirror planes, �v and �h).

3. Folded up layer symmetry

In this section, we sketch how the symmetry of a nanotube is

determined with the help of the symmetry of an unfolded

diperiodic layer. Since the presently synthesized tubes may be

studied on the basis of the hexagonal layers only, the method

will be elaborated for such a case for clarity. As will be shown,

this is essentially suf®cient even for BC2N tubes, which can be

(more naturally, perhaps) studied by use of a rectangular layer

lattice. Therefore, it is not surprising that some of the results

are analogous to those derived for the carbon nanotubes.

Nevertheless, the method can be easily generalized to

accommodate any diperiodic symmetry.

The starting fact is that each symmetry operation of a

nanotube corresponds to some symmetry operation of the

layer. The symmetries of the layers themselves form a diper-

iodic group (Wood, 1964; Litvin & Wike, 1991; MilosÆevicÂ et al.,

1998). Besides the two-dimensional lattice translations, there

may be present second-order screw axes, glide planes and

point-group operations. Analogously to the line groups, these

subperiodic groups may also be factorized into the (two-

dimensional) generalized translational and axial point group.

Still, the present derivation is facilitated by the fact that all the

hexagonal diperiodic groups Dg65 ÿDg80 are symmorphic.

Thus, they are (semidirect) products of an axial crystal-

lographic point group (with the principal axis of either third or

sixth order) and the 2D translational group generated by the

lattice vectors a1 and a2 of equal length a0 making an angle of

�=3 (Fig. 1).

To form a tube �n1; n2�, this layer is rolled up so that the

chiral vector c � n1a1 � n2a2 (n1; n2 2 Z) becomes a circle in

the perpendicular cross section of the tube. Obviously, the 2D

lattice translations along the chiral vector form pure rotational

symmetries Cn of the tube, generated by the minimal among

them, Cn, where1

n � GCD�n1; n2� �1a�
(the greatest common divisor). On the other hand, the 2D

lattice translations perpendicular to the chiral vector remain

pure translational symmetries of the tube, generated by the

minimal one, a � ÿ��2n2 � n1�=nR�a1 � ��2n1 � n2�=nR�a2.

Its length

a � �3�n2
1 � n2

2 � n1n2��1=2

nR a0;

R � 3 if �n1 ÿ n2�=n 2 Z,

1 otherwise

�
�1b�

is therefore the translational period of the tube.

Clearly, all 2D lattice translations remain symmetries of the

tube. Those encountered above produce on the tube pure

rotations and pure translations only (making a symmorphic

subgroup). The others combine translations and rotations,

inevitably yielding helical (screw-axis) symmetry, as a conse-

quence of the underlying hexagonal 2D symmetry. Thus,

the L�1� group of the form Tr
q�a�Cn contains the elements

`�t; s� � �Cr
qjna=q�tCs

n, where q and r are to be found. At ®rst,

it is helpful to note that the action of the screw-axis generator

�Cr
qjna=q� manifests itself in a re®nement of the elementary

cell: within a single translational period there are q=n identical

monomers, i.e. horizontal slices of the height na=q, each being

mapped to the next one by �Cr
qjna=q�. Since in the slice there

are exactly n 2D lattice cells, the tube cell consists of q 2D

cells. On the other hand, the tube cell being on a 2D lattice, the

rectangle over c=n and a contains

q � 2
n2

1 � n1n2 � n2
2

nR �1c�

2D lattice cells. Finally, we use the fact that each translation of

a 2D lattice uniquely determines an element `�t; s�: while on

the tube the elements `�t; s� and `�t; s� n� are equal, on the

unfolded 2D lattice they correspond to vectors differing by c.

Therefore, the whole 2D lattice is generated by elements

corresponding to `�t; s� (t; s � 0;�1; . . .) and for some parti-

cular t and s the lattice basis a1 and a2 must be obtained. With

the help of elementary number theory (DamnjanovicÂ et al.,

1999a,b), this requirement gives (the Euler function ' gives

the number of coprimes less than or equal to its argument)

r � n1 � 2n2 ÿ �n2=n�'�n1=n�ÿ1
qR

n1R
;

p � nR ��2n2 � n1�=nR�'��2n1�n2�=nR�ÿ1qÿ n2

2n1 � n2

: �1d�
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Figure 1
Hexagonal 2D lattice, with basis vectors a1 and a2, and shaded elementary
cell. The angle between a1 and the chiral vector c (determining the tube)
is the chiral angle �. The example corresponds to the tube (6,4).

1 The notation used here is a standard crystallographic one specialized for the
monoperiodic systems; in the rapidly developing nanotube theory, there are
several conventions. E.g. in Saito et al. (1998), instead of our n, a, a, q, the
symbols d, ~T, T and N are used, while the quantities multiplied by R have
subscript R.
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To comply with the convention providing unique correspon-

dence of the line groups and the helicity parameters r and p,

their values should be taken modulo q=n and q, respectively.

This completes the determination of the group L�1� related

to 2D lattice translations only. The other line-group elements

depend both on the point symmetries of the 2D layer and on

the chiral angle of the considered tube. Combining the

structure of the line groups given in Table 1 with the derived

form of L�1�, it is easy to see that the candidates to describe

symmetry of (hexagonal) tubes are only the line-group

families 1, 4, 5, 8 and 13, since the others do not allow a

(nontrivial) screw axis. There are two general conclusions

further restricting the choice.

First, a horizontal mirror plane and all but the second-order

principal-axis rotations of the 2D lattice obviously do not give

symmetries of the tube. Consequently, the 2D layers differing

only in the horizontal plane are rolled up in tubes with the

same symmetry (thus, the neglected deviations of the atoms

from the layer plane, which in some cases can destroy the

horizontal mirror symmetry, are irrelevant for the ®nal

symmetry group; e.g. BN tubes). As for the second-order layer

axis, it always remains the tube symmetry, becoming the

horizontal U axis. Thus, if a layer has such an axis, the tube

group contains the ®fth family group as a subgroup.

Further, only parallel and perpendicular to the chiral vector

vertical mirror planes of the 2D lattice remain symmetries of

the tube, becoming horizontal and vertical mirror planes,

respectively. Thus, if a 2D lattice possesses vertical mirror

planes, the special position of the chiral vectors is singled out,

corresponding to the tubes of the enlarged symmetry groups.

Following the carbon nanotubes terminology SAI98b (Dres-

selhaus et al., 1998), they will be called zigzag and armchair

tubes, respectively, to differentiate them from the chiral tubes

with the chiral vector in a general position. With the appro-

priate choice of a1 and a2, these special tubes are �n; 0� and

�n; n�, respectively, having q � 2n, r � 1 and p � n by (1)

[also, for �n; 0� tubes R � 1, a � 31=2a0 and, for �n; n� ones,

R � 3, a � a0].

Putting together both conclusions, it comes out that if the

layer principal axis is of odd order (i.e. for the diperiodic

group point factors C3, S6, D3, C3h, C3v, D3d and D3h), the

chiral tubes have the ®rst family line-group symmetry

LC � Tr
q�a�Cn � Lqp: �2a�

When the point symmetry of the layer is one of C3v, D3d and

D3h, the zigzag and armchair tube line groups are from the

eighth and fourth families, respectively:

LZ � T1
2n�a�Cnv � L2nnmc; �2b�

LA � T1
2n�a�Cnh � L2nn=m: �2c�

In the other case, if there is an even-order principal axis of the

layer (the diperiodic group point factor is one of C6, D6, C6v,

C6h and D6h), the chiral tube symmetry groups are from the

®fth family. Since the presence of the U axis allows only

coincidental appearance of vertical and horizontal mirror

planes, both zigzag and armchair tubes (for the layer-point

symmetries described by C6v or D6h) have a symmetry group

of the 13th family:

LC � Tr
q�a�Dn � Lqp22; �3a�

LZA � T1
2n�a�Dnh � L2nn=mcm: �3b�

4. Symmetry groups of reported tubes

It remains to obtain the symmetry groups of various tubes

analyzing their speci®c layers separately. This will be

performed in the order of increasing symmetry and system

complexity. The quantities related to the chiral, zigzag and

armchair tubes will be indexed by C, Z and A. The orbit types

of the atoms are denoted according to MilosÆevicÂ & Damnja-

novicÂ (1993) and MilosÆevicÂ et al. (1996, 1997) in the coordinate

system with the z axis being the tube axis and the x axis

through the lattice point �0; 0� in the ®gures. The diperiodic

groups are denoted according to Wood (1964), Litvin & Wike

(1991) and MilosÆevicÂ et al. (1998).

4.1. BN and GaN tubes

The layer lattice (Fig. 2) diperiodic group is Dg78 � p�6m2.

Its point factor D3h has vertical mirror planes and third-order

principal axis. Thus, the symmetry groups of the synthesized

BN (Blase et al., 1994; Rubio et al., 1994; Loiseau et al., 1996;

Weng-Sieh et al., 1995) and only proposed GaN (Lee et al.,

Figure 2
Hexagonal 2D lattice of BN and GaN (B, Ga � circles, N � black square,
with mirror planes �Z=A

v;h remaining in zigzag and armchair tubes;
a0 � 2:5 AÊ for BN and a0 � 3 AÊ for GaN).

Figure 3
MS2 layers. (a) Perpendicular projection of the monolayer S±M±S (white
circle � M, black circle � S; a0 � 3 AÊ ); the elementary cell of the
monolayer (shaded) contains two overlapping sulfur and one transition-
metal atom. (b) and (c) Cross section of 2Hb and 3R polytypes.
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1999) tubes are (2). The tubes are two orbit systems, generated

by the transversal being the group (2a) from the pair of atoms

of B (or Ga) and N. Both orbits are of the types a1, b1 and d1,

with corresponding stabilizers C1, C1v and C1h, respectively, for

chiral, zigzag and armchair tubes.

4.2. Transition-metal dichalcogenide tubes

Here we refer to two compounds, MoS2 and WS2, having

the same structure both in the layer and in the tubular forms.

The tubes consist (Wilson & Yoffe, 1969; Tenne et al., 1992) of

two or three monolayers M±S±M (M � Mo, W), each of them

being the pair of the parallel sulfur planes at a distance

� � 6 AÊ , bisected by the transition-metal plane (Fig. 3). The

sulfur atoms of the different planes are one above another,

while the metal atoms are between the centers of the sulfur

triangles [i.e. translated by �a1 � a2�=3]. Thus the layer

elementary cell contains two S (one above another) and one

transition-metal atoms.

Both WS2 and MoS2 crystallize in the following two forms

differing in the layer repeated along the c direction. The layer

of the hexagonal 2Hb polytype contains two monolayers, the

second one being rotated by �=3 (around the perpendicular

axis through S) and then translated for �a1 � a2�=3, resulting in

the interchange of the S- and M-atom positions. A single layer

of the 3R polytype consists of three monolayers: with respect

to the ®rst one, the second is translated by �a1 � a2�=3

(S atoms are moved above M atoms of the ®rst monolayer),

and the third by 2�a1 � a2�=3 (its M atoms get above the S

atoms of the ®rst layer). In both cases, the distance between

the monolayers (Wilson & Yoffe, 1969) is � � 2 AÊ . The tubes

with the walls of both polytype layers are observed (Tenne et

al., 1998; RemsÆkar, SÆ kraba, Ballif, SanjineÂs & LeÂvy, 1999): the

nanotubes (diameters less than 0:1 mm) grow in the hexagonal

2Hb polytype, and the microtubes (diameters greater than

2 mm) prefer the rhombohedral 3R

polytype (RemsÆkar, SÆ kraba, SanjineÂs

& LeÂvy, 1999).

Despite the difference in the space

groups of crystalline polytypes,

namely P63=mmc for 2Hb and R3m

for 3R, they have the same diperiodic

group Dg69 � p3m1 (point factor

C3v) implying that the resulting tubes

have the same symmetry. In fact, these

groups coincide with that of the

monolayered tubes (not observed yet)

of the same chirality, since the mono-

layer group Dg78 � p�6m2, with point

factor D3h, differs only in an addi-

tional horizontal plane. The odd order

of the principal axis of all these layers

means that, depending on the chiral-

ity, the tube line group is one of (2).

While the monolayered tubes have 3

orbits (two S and one M), the single-

layered 2Hb and 3R tubes consist of 6

and 9 orbits, respectively, being of the same type as for the BN

tubes.

4.3. Carbon tubes

These are the most extensively studied tubes (Iijima, 1991)

and have a 2D layer of graphite honeycomb lattice (Fig. 4). Its

symmetry is Dg80 � p 6
m

2
m

2
m, with the point factor D6h. The

layer's second-order vertical axes (two non-equivalent types)

lead to the tube line groups (3). Each carbon single-wall

nanotube is a mono orbit system, with the orbits being of types

a1 (chiral), b1 (zigzag) and d1 (armchair), with respective

stabilizers C1, C1v and C1h; the transversal is the chiral group

(3a) for all chiralities.

4.4. BC3 tubes

The BC3 layer (Fig. 5) symmetry group is Dg80, as for

graphite, but with approximately doubled lattice vectors used

to de®ne the chiral vector [thus a0 in (1b) is doubled, resulting

in the doubled translational period]. Consequently, the

symmetry groups of BC3 tubes (Miyamoto, Rubio, Louie &

Cohen, 1994) are the same as for the carbon nanotubes (3).
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Figure 4
Honeycomb graphite lattice (a0 � 2:46 AÊ ).

Table 1
Line groups.

For each family of the line groups, the International symbol, different factorizations, generators, the
subgroup L�1� and the isogonal point group PI are given. Here, Tcd and U0 are the glide plane and horizontal
axis bisecting the vertical mirror planes of P. For the groups of families 1 and 5, q is a multiple of n [instead of
r, the helicity in the International symbol is given by its modular inverse p � n�rÿ1 �mod q=n��].

International symbol

n even n odd Factorizations Generators L�1� PI

1 Lqp Tr
q 
 Cn zrq;Cn Tr

q 
 Cn Cq

2 L�2n� Ln T ^ S2n z0;C2n�h T
 Cn S2n

3 L�2n� Ln=m T ^ Cnh z0;Cn; �h T
 Cn Cnh

4 L�2n�n=m T1
2nCnh � T1

2nS2n z1
2n;Cn; �h T1

2nCn C2nh

5 Lqp22 Lqp2 Tr
q ^Dn zrq;Cn;U Tr

q 
 Cn Dq

6 Lnmm Lnm T
 Cnv � Cnv ^ Tcd z0;Cn; �v T
 Cn Cnv

7 Lncc Lnc Cn ^ Tc zv;Cn T
 Cn Cnv

8 L�2n�nmc Cnv ^ T1
2n � Cnv ^ Tcd z1

2n;Cn; �v T1
2n 
 Cn C2nv

9 L�2n�2m Lnm T ^Dnd � Tc ^Dnd z0;Cn;U
0; �v T
 Cn Dnd

10 L�2n�2c Lnc TcS2n � TcdDn zv;Cn;U
0 T
 Cn Dnd

11 Ln=mmm L�2n�2m T ^Dnh � TcDnh z0;Cn;U; �v T
 Cn Dnh

12 Ln=mcc L�2n�2c TcCnh � TcDn zv;Cn;U T
 Cn Dnh

13 L�2n�n=mcm T1
2nDnh � T1

2nDnd z1
2n;Cn;U; �v T1

2n 
 Cn D2nh

� TcDnh � TcDnd
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Now, there are three C orbits and one B orbit of a1 type with

trivial stabilizer, in the chiral case. In the achiral cases, besides

one C orbit of the type a1 [trivial stabilizer and the transversal

(3b)], there is one C and one B orbit of the type b1 (stabilizer

C1v) in the zigzag case or of the type d1 (stabilizer C1h) in the

armchair case; transversal of both b1 and d1 orbits is the group

(3a).

4.5. BC2N tubes (type I)

There are several 2D lattices corresponding to this chemical

structure. Here we consider two con®gurations, the most

stable ones (Miyamoto, Rubio, Cohen & Louie, 1994; Weng-

Sieh et al., 1995) having quite different geometry and resulting

symmetry. Though the symmetry of these layers is not hex-

agonal, the previous results can be used owing to the possi-

bility of choosing suitable lattice vectors (making an angle of

�=3, with convenient length ratio).

The type I tube (Fig. 6) has approximately doubled lattice

vectors with respect to graphite but, contrary to the latter, the

actual diperiodic group Dg37 � p 2
m

2
m

2
m retains only C3

6 � C2

rotation and two vertical mirror planes, leaving the point

factor D2h. Therefore, although the symmetry groups of the

tubes are given by (3), as for the carbon tubes, the inequi-

valent tubes are between the chiral directions �n; 0� and

�ÿn; 2n� (with chiral angles between 0 and �=2), and zigzag

and armchair cases refer only to such cases, respectively [all

other chiral vectors, �n; n� inclusive, give chiral tubes]. A chiral

tube is built of two C, one B and one N orbits of the type a1

[trivial stabilizer and whole group (3a) as the transversal]; in

the achiral cases, C orbits are joined in the single general C

orbit [a1 with trivial stabilizer and the transversal being the

group (3b)], while B and N each form the orbits of the b1

(zigzag), i.e. d1 (armchair) type. The corresponding stabilizers

are C1v and C1h, respectively, while in both cases the trans-

versal is the group (3a).

4.6. BC2N tubes (type II)

The second type of BC2N tube has the underlying lattice

presented in Fig. 7. The elementary cell is doubled with

respect to the hexagonal lattice over a1 and a2, since the

periods are a1 and A2 � 2a2. In the layer's diperiodic group

Dg24 � pmm2, there is only a trivial principal axis, but the

vertical mirror plane of the point factor D1h enables one to

consider as inequivalent tubes (optical isomers are assumed

equivalent) only those with the chiral angles between 0 and

�=2. Again, the tubes with � � 0 are called zigzag, those with

� � �=2 armchair and the other ones chiral. Since the chiral

vector of �n1; n2� corresponds to an �n1; 2n2� hexagonal tube,

the latter will be used to derive the wanted symmetry group:

only those rototranslations of this auxiliary tube that corre-

spond to the hexagonal lattice translations with even a2 (i.e.

integer A2) component are the symmetries of the studied

BC2N tube. Such transformations make on the tube a halving

subgroup of (2) parametrized by (1) with 2n2 used instead of

n2. Since no U axis appears, this subgroup is the symmetry

group which is looked for:

LC � TR
Q�A�CN � LQP: �4a�

The values of the group parameters Q, R, N, P and A, derived

utilizing the direct product structure (DamnjanovicÂ & VujicÆicÂ,

1981) of the group (2), are given in Table 2.

For both zigzag �n; 0� and armchair �ÿn; n� tubes, ~n1 � 1,

making relevant the ®rst row of the table. The obtained value

q � 2n, i.e. Q � N, means that the achiral symmetry groups

are symmorphic, manifesting rectangular layer symmetry.

When completed by �v, i.e. �h, they become the line groups of

the third and sixth families, respectively:

LZ � T�31=2a0�Cnv � Lnmm;Lnm; �4b�
LA � T�a0�Cnh � L�2n�;Ln=m: �4c�

A chiral tube is built of two C, one B and one N orbits of the

type a1 [trivial stabilizer and group (2a) being the transversal].

In the zigzag case, two C orbits are both of b1 type for n odd,

while for even n one of them is of b1 and the other one of c1

type (for both types the stabilizer C1v with different mirror

plane); B atoms form a b1 type orbit, while the orbit of N

atoms is b1 when n is odd and c1 otherwise. In the armchair

case, two orbits of C atoms are a2 and b1 with stabilizers

fe; ��hj1�g and C1h; N and B atoms form a2 and b1 orbits,

respectively. For all the achiral orbits, the transversal is index-2

subgroup TCn.

Figure 6
Lattice of BC2N type I layer (B� white circle, C � black circle, N� black
square, a0 � 5 AÊ ).

Figure 5
Lattice of BC3 layer (B � white circle, C � black circle, a0 � 5:14 AÊ ).
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5. Concluding remarks

All the geometrical symmetries of the nanotubes reported in

the literature are found. In addition to the rotations, transla-

tions and screw axes, some of the known single-wall tubes

possess horizontal rotational axes. Also, zigzag and armchair

tubes have vertical and horizontal mirror planes, respectively.

If the 2D lattice of the unrolled tube has even-order principal

axis, the horizontal U axis emerges as tube symmetry and the

resulting line group for the zigzag and armchair cases is the

same. Combined with special type screw axes, the mirror

planes of achiral tubes give vertical glide planes Tc and

rotore¯ection axes S2n, respectively. The parameters q and r of

the helical group (screw axis) are found in the closed form.

Since 2�=q is the angle of the minimal rotation (combined

with the fractional translation) performed by the symmetry

group, the order of the principal axis of the isogonal group is q

and it is always even (DamnjanovicÂ et al., 1999a,b). Moreover,

q is the number of 2D lattice cells in the elementary transla-

tional cell of the tube. The variety of the symmetry groups

obtained for each type of tube shows that the properties of the

nanotubes may vary greatly, depending on their chiralities.

There are many physical properties based on symmetry and

the presented classi®cation of nanotubes according to their

symmetry can be widely exploited. At ®rst, the symmetry can

be used to ®nd good quantum numbers and related selection

rules. These are related to the irreducible representations

of the found group. Besides the z component k of quasi-

momentum, in the literature is used also the z component m of

angular momentum and helical momenta, ~k and ~m. In fact, the

latter is the momentum canonically conjugated to the helix

generated by the screw-axis generator �Cr
qjna=q�, obviously

including a part of m, while the remaining part is ~m. It should

be emphasized that m is not a conserved quantum number,

since it originates from the isogonal point group, which in

nonsymmorphic cases is not symmetry of the system. Selection

rules can be easily found with these conserved quantum

numbers.

The orbit types given for each of the tubes characterize the

system. Besides the possibility to de®ne the system by these

data, they are relevant in all quantum-mechanical calculations

performed in the space induced over the atoms. Here come

e.g. the tight-binding approach to electronic bands (Hamada et

al., 1992; White et al., 1993; Jishi et al., 1995; Saito et al., 1998;

Dresselhaus et al., 1998; Reich & Thomsen, 2000), vibrational

(Saito et al., 1998; MilosÆevicÂ & DamnjanovicÂ, 1993; MilosÆevicÂ

et al., 1996, 1997; Dresselhaus et al., 1998) and spin wave

analysis. In fact, they enable complete classi®cation of the

corresponding bands and degeneracies, and maximal possible

simpli®cation of the corresponding dispersion relations.

Let us mention again that this method can be easily

generalized to the tubes with a non-hexagonal underlying 2D

lattice. For example, the results for type II BC2N tubes may be

obtained even more easily and in more compact form with

parametrization c � N1a1 � N2�a2 ÿ a1� corresponding to

rectangular basis a1, a2 ÿ a1 of a 2D lattice. For clarity, we

present only the hexagonal-lattice-based analysis, and it

suf®ces even for BC2N tubes, which are the only reported

exception in this sense. The method may also be generalized

to study the symmetry of multiwall tubes, along the lines

sketched for multiwall carbon tubes (DamnjanovicÂ et al.,

1999a,b).
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